ADS54J60 Dual-Channel, 16-Bit, 1.0-GSPS Analog-to-Digital Converter

1 Features

- 16-Bit Resolution, Dual-Channel, 1-GSPS ADC
- Noise Floor: $-159 \mathrm{dBFS} / \mathrm{Hz}$
- Spectral Performance ($\mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz}$ at -1 dBFS):
- SNR: 70 dBFS
- NSD: $-157 \mathrm{dBFS} / \mathrm{Hz}$
- SFDR: 86 dBc (Including Interleaving Tones)
- SFDR: 96 dBc (Except HD2, HD3, and Interleaving Tones)
- Spectral Performance ($\mathrm{f}_{\mathrm{N}}=350 \mathrm{MHz}$ at -1 dBFS):
- SNR: 67.5 dBFS
- NSD: - $154.5 \mathrm{dBFS} / \mathrm{Hz}$
- SFDR: 75 dBc
- SFDR: 85 dBc (Except HD2, HD3, and Interleaving Tones)
- Channel Isolation: 100 dBc at $\mathrm{f}_{\mathrm{N}}=170 \mathrm{MHz}$
- Input Full-Scale: $1.9 \mathrm{~V}_{\mathrm{PP}}$
- Input Bandwidth (3 dB): 1.2 GHz
- On-Chip Dither
- Integrated Wideband DDC Block
- JESD204B Interface with Subclass 1 Support:
- 2 Lanes per ADC at 10.0 Gbps
- 4 Lanes per ADC at 5.0 Gbps
- Support for Multi-Chip Synchronization
- Power Dissipation: 1.35 W/ch at 1 GSPS
- VQFNP-72 Package ($10 \mathrm{~mm} \times 10 \mathrm{~mm}$)

2 Applications

- Radar and Antenna Arrays
- Broadband Wireless
- Cable CMTS, DOCSIS 3.1 Receivers
- Communications Test Equipment
- Microwave Receivers
- Software Defined Radio (SDR)
- Digitizers

3 Description

The ADS54J60 is a low-power, wide-bandwidth, 16bit, 1.0-GSPS, dual-channel, analog-to-digital converter (ADC). Designed for high signal-to-noise ratio (SNR), the device delivers a noise floor of $-159 \mathrm{dBFS} / \mathrm{Hz}$ for applications aiming for highest dynamic range over a wide instantaneous bandwidth. The device supports the JESD204B serial interface with data rates up to 10 Gbps , supporting two or four lanes per ADC. The buffered analog input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch energy. Each ADC channel optionally can be connected to a wideband digital down-converter (DDC) block. The ADS54J60 provides excellent spurious-free dynamic range (SFDR) over a large input frequency range with very low power consumption.
The JESD204B interface reduces the number of interface lines, allowing high system integration density. An internal phase-locked loop (PLL) multiplies the ADC sampling clock to derive the bit clock that is used to serialize the 16-bit data from each channel.

Device Information

PART NUMBER	SPEED GRADE (MSPS)	RESOLUTION (Bits)
ADS54J40	1000	14
ADS54J60	1000	16

(1) For all available packages, see the orderable addendum at the end of the data sheet.

FFT for 170 MHz Input Signal
(SNR = 69.8 dBFS ; SFDR $=88 \mathrm{dBc}$;
IL Spur = 86 dBc ; Non HD2, HD3 Spur $=89 \mathrm{dBc}$)

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History. 2
5 Pin Configuration and Functions 3
6 Specifications 5
6.1 Absolute Maximum Ratings 5
6.2 ESD Ratings 5
6.3 Recommended Operating Conditions 5
6.4 Thermal Information 6
6.5 Electrical Characteristics. 6
6.6 AC Characteristics 8
6.7 Digital Characteristics 10
6.8 Timing Characteristics 11
6.9 Typical Characteristics 13
7 Detailed Description 22
7.1 Overview 22
7.2 Functional Block Diagram 22
7.3 Feature Description 23
7.4 Device Functional Modes 29
7.5 Register Maps 39
8 Application and Implementation 61
8.1 Application Information. 61
8.2 Typical Application 65
9 Power Supply Recommendations 67
10 Layout. 68
10.1 Layout Guidelines 68
10.2 Layout Example 69
11 Device and Documentation Support 70
11.1 Community Resources. 70
11.2 Trademarks 70
11.3 Electrostatic Discharge Caution. 70
11.4 Glossary 70
12 Mechanical, Packaging, and Orderable Information 70

4 Revision History

Changes from Revision A (May 2015) to Revision B Page

- Released to production 1
Changes from Original (April 2015) to Revision A Page
- Made changes to preview document. 1

5 Pin Configuration and Functions

Shopping Cart: Name This Cart Edit

Web ID? 155352399 Access ID? 63316 Salesorder Number Uncommitted

ADS54J60IRMP added to order.
Pricing is valid for this Web ID until 5/28/2016 if you place your order online.
Quantities are not reserved until the order has been submitted.

Quantity	Part Number	Customer Reference	
\begin{tabular}{l\|l	l	}	
\hline
\end{tabular} | | | |

All prices are in US dollars.

Index	Quantity	Image	Part Number	Description	Customer Reference	Available Quantity	Backorder Quantity	Unit Price	Extended Price
区 1	1		ADS54J60IRMP	$\begin{gathered} \text { IC ADC } \\ \text { 16BIT 2CH } \\ \text { 1GSPS } \\ \text { 72VQFN } \end{gathered}$		1 Immediate	0	820.83000	\$820.83
Subtotal $\$ 820.83$ Shipping Estimate Total unknown									

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.		
CLOCK, SYSREF			
CLKINM	28	I	Negative differential clock input for the ADC
CLKINP	27	I	Positive differential clock input for the ADC
SYSREFM	34	1	Negative external SYSREF input
SYSREFP	33	I	Positive external SYSREF input
CONTROL, SERIAL			
PDN	50	I/O	Power down. Can be configured via an SPI register setting. Can be configured to fast overrange output for channel A via the SPI.
RESET	48	I	Hardware reset; active high. This pin has an internal 20-k Ω pulldown resistor.
SCLK	6	I	Serial interface clock input
SDIN	5	I	Serial interface data input
SDOUT	11	O	Serial interface data output. Can be configured to fast overrange output for channel B via the SPI.
SEN	7	I	Serial interface enable
DATA INTERFACE			
DAOM	62	0	JESD204B serial data negative outputs for channel A
DA1M	59		
DA2M	56		
DA3M	54		
DAOP	61	0	JESD204B serial data positive outputs for channel A
DA1P	58		
DA2P	55		
DA3P	53		
DB0M	65	0	JESD204B serial data negative outputs for channel B
DB1M	68		
DB2M	71		
DB3M	1		
DB0P	66	O	JESD204B serial data positive outputs for channel B
DB1P	69		
DB2P	72		
DB3P	2		
SYNC	63	1	Synchronization input for JESD204B port
INPUT, COMMON MODE			
INAM	41	1	Differential analog negative input for channel A
INAP	42	I	Differential analog positive input for channel A
INBM	14	1	Differential analog negative input for channel B
INBP	13	1	Differential analog positive input for channel B
VCM	22	0	Common-mode voltage, 2.1 V . Note that analog inputs are internally biased to this pin through 600Ω (effective), no external connection from the VCM pin to the INxP or INxM pin is required.
POWER SUPPLY			
AGND	$18,23,26,29,32,36,37$	1	Analog ground
AVDD	$\begin{gathered} 9,12,15,17,25,30,35,38 \\ 40,43,44,46 \end{gathered}$	I	Analog 1.9-V power supply
AVDD3V	10, 16, 24, 31, 39, 45	1	Analog 3.0-V power supply for the analog buffer
DGND	3, 52, 60, 67	1	Digital ground
DVDD	8,47	1	Digital 1.9-V power supply
IOVDD	4, 51, 57, 64, 70	1	Digital 1.15-V power supply for the JESD204B transmitter
NC, RES			
NC	19-21	-	Unused pins, do not connect
RES	49	1	Reserved pin. Connect to DGND.

ADS54J60
www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX	UNIT
	AVDD3V	-0.3	3.6	
	AVDD	-0.3	2.1	
Supply volage range	DVDD	-0.3	2.1	
	IOVDD	-0.2	1.4	
Voltage between AGND and	GND	-0.3	0.3	V
	INAP, INBP, INAM, INBM	-0.3	3	
Voltage app	CLKINP, CLKINM	-0.3	AVDD + 0.3	V
Volage apple	SYSREFP, SYSREFM	-0.3	AVDD + 0.3	
	SCLK, SEN, SDIN, RESET, $\overline{\text { SYNC, PDN }}$	-0.2	2.1	
Storage temperature, $\mathrm{T}_{\text {stg }}$		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$			VALUE
$\mathrm{V}_{(\text {ESD })}$	UNIT		

(1) JEDEC document JEP155 states that $500-\mathrm{V}$ HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)(2)}$

			MIN	NOM	MAX	UNIT
Supply voltage range	AVDD3V		2.85	3.0	3.6	V
	AVDD		1.8	1.9	2.0	
	DVDD		1.7	1.9	2.0	
	IOVDD		1.1	1.15	1.2	
Analog inputs	Differential input voltage range			1.9		V_{PP}
	Input common-mode voltage			2.0		V
	Maximum analog input frequency for 1.9-V $\mathrm{V}_{\text {PP }}$ input amplitude ${ }^{(3)(4)}$			400		MHz
Clock inputs	Input clock frequency, device clock frequency		500		1000	MHz
	Input clock amplitude differential$\left(\mathrm{V}_{\text {CLKP }}-\mathrm{V}_{\text {CLKM }}\right)$	Sine wave, ac-coupled	0.75	1.5		$V_{\text {PP }}$
		LVPECL, ac-coupled	0.8	1.6		
		LVDS, ac-coupled		0.7		
	Input device clock duty cycle		45\%	50\%	55\%	
Temperature	Operating free-air, T_{A}		-40		85	${ }^{\circ} \mathrm{C}$
	Operating junction, T_{J}			$105^{(5)}$	125	

(1) SYSREF must be applied for the device to initialize; see the SYSREF Signal section for details.
(2) After power-up, always use a hardware reset to reset the device for the first time; see Table 61 for details.
(3) Operating 0.5 dB below the maximum-supported amplitude is recommended to accommodate gain mismatch in interleaving ADCs.
(4) At high frequencies, the maximum supported input amplitude reduces; see Figure 36 for details.
(5) Prolonged use above the nominal junction temperature can increase the device failure-in-time (FIT) rate.

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		$\frac{\text { ADS54J60 }}{\text { RMP (VQFNP) }}$	UNIT
		72 PINS	
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	22.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	5.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	2.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	2.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JC} \text { (bot) }}$	Junction-to-case (bottom) thermal resistance	0.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}, \mathrm{ADC}$ sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\operatorname{AVDD3V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}, \mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
GENERAL						
	ADC sampling rate				1000	MSPS
	Resolution		16			Bits
POWER SUPPLIES						
AVDD3V	3.0-V analog supply		2.85	3.0	3.6	V
AVDD	1.9-V analog supply		1.8	1.9	2.0	V
DVDD	1.9-V digital supply		1.7	1.9	2.0	V
IOVDD	1.15-V SERDES supply		1.1	1.15	1.2	V
$\mathrm{I}_{\text {AVDD3V }}$	$3.0-\mathrm{V}$ analog supply current	$\mathrm{V}_{\text {IN }}=$ full-scale on both channels		334	360	mA
$\mathrm{I}_{\text {AVDD }}$	1.9-V analog supply current	$\mathrm{V}_{\text {IN }}=$ full-scale on both channels		359	510	mA
$\mathrm{I}_{\text {DVDD }}$	1.9-V digital supply current	Four lanes per ADC (20x PLL)		197	260	mA
l IovDd	1.15-V SERDES supply current	Four lanes per ADC (20x PLL)		566	920	mA
$\mathrm{P}_{\text {dis }}$	Total power dissipation	Four lanes per ADC (20x PLL)		2.71	3.1	W
$\mathrm{I}_{\text {DVDD }}$	1.9-V digital supply current	Two lanes per ADC (40x PLL)		211		mA
IIovDd	1.15-V SERDES supply current	Two lanes per ADC (40x PLL)		618		mA
$\mathrm{P}_{\text {dis }}$	Total power dissipation	Two lanes per ADC (40x PLL)		2.80		W
$\mathrm{I}_{\text {DVDD }}$	1.9-V digital supply current	Four lanes per ADC (20x PLL), 2X decimation		197		mA
IIOVDD	1.15-V SERDES supply current	Four lanes per ADC (20x PLL), 2X decimation		593		mA
$\mathrm{P}_{\text {dis }}$	Total power dissipation			2.74		W
$\mathrm{I}_{\text {DVDD }}$	1.9-V digital supply current	Four lanes per ADC (20x PLL), 4X decimation		176		mA
IIOVDD	1.15-V SERDES supply current	Four lanes per ADC (20x PLL), 4X decimation		562		mA
$\mathrm{P}_{\text {dis }}{ }^{(1)}$	Total power dissipation			2.66		W
	Global power-down power dissipation			139	315	mW

[^0]
Electrical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}, \mathrm{IOVDD}=1.15 \mathrm{~V}$, and -1 -dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUTS (INAP, INAM, INBP, INBM)					
Differential input full-scale voltage			1.9		$V_{P P}$
$\mathrm{V}_{\text {IC }} \quad$ Common-mode input voltage			2.0		V
$\mathrm{R}_{\text {IN }} \quad$ Differential input resistance	At $170-\mathrm{MHz}$ input frequency		0.6		k Ω
$\mathrm{C}_{\text {IN }} \quad$ Differential input capacitance	At 170-MHz input frequency		4.7		pF
Analog input bandwidth (3 dB)	$50-\Omega$ source driving ADC inputs terminated with $50-\Omega$		1.2		GHz
CLOCK INPUT (CLKINP, CLKINM)					
Internal clock biasing	CLKINP and CLKINM are connected to internal biasing voltage through 400- Ω		1.15		V

6.6 AC Characteristics

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and -1 -dBFS differential input, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SNR	Signal-to-noise ratio	$\mathrm{f}_{\text {IN }}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		70.9		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		70.6		
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	67.2	70		
		$\mathrm{f}_{\text {IN }}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		69.2		
		$\mathrm{f}_{\text {IN }}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		68.7		
		$\mathrm{fin}_{\text {IN }}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		68.1		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		67.1		
		$\mathrm{f}_{\text {IN }}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		66.5		
NSD	Noise spectral density	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		157.9		dBFS/Hz
		$\mathrm{fiN}_{\text {IN }}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		157.6		
		$\mathrm{f}_{\text {IN }}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	154.2	157		
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		156.2		
		$\mathrm{f}_{\text {IN }}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		155.7		
		$\mathrm{f}_{\text {IN }}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		155.1		
		$\mathrm{f}_{\text {IN }}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		154.1		
		$\mathrm{f}_{\mathrm{IN}}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		153.5		
SINAD	Signal-to-noise and distortion ratio	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		70.7		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		70.4		
		$\mathrm{f}_{\text {IN }}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	67	69.8		
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		69.1		
		$\mathrm{f}_{\mathrm{IN}}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		68.3		
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		67.6		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		66		
		$\mathrm{fin}_{\text {IN }}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		64.9		
SFDR	Spurious free dynamic range (excluding IL Spurs)	$\mathrm{f}_{\text {IN }}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		85		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		84		
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	78	88		
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		86		
		$\mathrm{f}_{\mathrm{IN}}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		81		
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		78		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		73		
		$\mathrm{fiN}_{\text {IN }}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		69		
HD2	Second-order harmonic distortion	$\mathrm{f}_{\text {IN }}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		85		dBc
		$\mathrm{f}_{\text {IN }}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		92		
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	79	95		
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		86		
		$\mathrm{f}_{\text {IN }}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		81		
		$\mathrm{f}_{\text {IN }}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		81		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		76		
		$\mathrm{f}_{\mathrm{IN}}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		69		

ADS54J60
www.ti.com

AC Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
HD3	Third-order harmonic distortion	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		87		dBc
		$\mathrm{fin}^{\text {IN }}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		84		
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	82	89		
		$\mathrm{f}_{\text {IN }}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		92		
		$\mathrm{f}_{\text {IN }}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		82		
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		78		
		$\mathrm{f}_{\text {IN }}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		73		
		$\mathrm{fiN}_{\text {I }}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		88		
Non HD2,HD3	Spurious-free dynamic range (excluding HD2, HD3, and IL Spur)	$\mathrm{f}_{\text {IN }}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		94		dBFS
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		97		
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	79	96		
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		95		
		$\mathrm{f}_{\mathrm{IN}}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		95		
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		91		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		85		
		$\mathrm{f}_{\mathrm{IN}}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		88		
THD	Total harmonic distortion	$\mathrm{f}_{\text {IN }}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		83		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		83		
		$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	74	87		
		$\mathrm{f}_{\mathrm{IN}}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		84		
		$\mathrm{f}_{\mathrm{IN}}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		78		
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		76		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		71		
		$\mathrm{f}_{\mathrm{IN}}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		69		
SFDR_IL	Interleaving spur	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		88		dBc
		$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		90		
		$\mathrm{f}_{\text {IN }}=170 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$	69	86		
		$\mathrm{f}_{\text {IN }}=230 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		85		
		$\mathrm{f}_{\mathrm{IN}}=270 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		84		
		$\mathrm{f}_{\mathrm{IN}}=300 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		82		
		$\mathrm{f}_{\mathrm{IN}}=370 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		82		
		$\mathrm{f}_{\text {IN }}=470 \mathrm{MHz}, \mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$		78		
IMD3	Two-tone, third-order intermodulation distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{IN} 1}=185 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=190 \mathrm{MHz}, \\ & \mathrm{~A}_{\mathrm{IN}}=-7 \mathrm{dBFS} \end{aligned}$		-88		dBFS
		$\begin{aligned} & \mathrm{f}_{\mathrm{IN} 1}=365 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=370 \mathrm{MHz}, \\ & \mathrm{~A}_{\mathrm{IN}}=-7 \mathrm{dBFS} \end{aligned}$		-79		
		$\begin{aligned} & \mathrm{f}_{\mathrm{IN} 1}=465 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=470 \mathrm{MHz}, \\ & \mathrm{~A}_{\mathrm{IN}}=-7 \mathrm{dBFS} \end{aligned}$		-75		
Crosstalk	Isolation between channel A and B	Full-scale, $170-\mathrm{MHz}$ signal on aggressor; idle channel is victim		100		dB

ADS54J60

SBAS706B -APRIL 2015-REVISED AUGUST 2015
www.ti.com

6.7 Digital Characteristics

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, $\overline{\text { SYNC, PDN) }}{ }^{(1)}$					
$\mathrm{V}_{\mathrm{IH}} \quad$ High-level input voltage	All digital inputs support 1.2-V and 1.8-V logic levels	0.8			V
$\mathrm{V}_{\mathrm{IL}} \quad$ Low-level input voltage	All digital inputs support 1.2-V and 1.8-V logic levels			0.4	V
$\mathrm{I}_{\mathrm{H}} \quad$ High-level input current	SEN		0		$\mu \mathrm{A}$
	RESET, SCLK, SDIN, PDN, $\overline{\text { SYNC }}$		50		
IIL Low-level input current	SEN		50		$\mu \mathrm{A}$
	RESET, SCLK, SDIN, PDN, $\overline{\text { SYNC }}$		0		
DIGITAL INPUTS (SYSREFP, SYSREFM)					
$\mathrm{V}_{\mathrm{D}} \quad$ Differential input voltage		0.35	0.45	1.4	V
$\mathrm{V}_{\text {(CM_DIG) }}$ Common-mode voltage for SYSREF			1.3		V
DIGITAL OUTPUTS (SDOUT, PDN ${ }^{(2)}$)					
$\mathrm{V}_{\mathrm{OH}} \quad$ High-level output voltage		$\begin{array}{r} \text { DVDD - } \\ 0.1 \end{array}$	DVDD		V
$\mathrm{V}_{\text {OL }} \quad$ Low-level output voltage				0.1	V
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM) ${ }^{(3)}$					
$\mathrm{V}_{\mathrm{OD}} \quad$ Output differential voltage	With default swing setting.		700		$m V_{P P}$
$V_{O C} \quad$ Output common-mode voltage			450		mV
Transmitter short-circuit current	Transmitter pins shorted to any voltage between -0.25 V and 1.45 V	-100		100	mA
$\mathrm{z}_{\text {os }} \quad$ Single-ended output impedance			50		Ω
Output capacitance	Output capacitance inside the device, from either output to ground		2		pF

(1) The RESET, SCLK, SDIN, and PDN pins have a $20-\mathrm{k} \Omega$ (typical) internal pulldown resistor to ground, and the SEN pin has a $20-\mathrm{k} \Omega$ (typical) pullup resistor to IOVDD.
(2) When functioning as an OVR pin for channel B.
(3) $100-\Omega$ differential termination.

6.8 Timing Characteristics

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

	MIN	TYP	MAX	UNITS
SAMPLE TIMING				
Aperture delay	0.75		1.6	ns
Aperture delay matching between two channels on the same device		± 70		ps
Aperture delay matching between two devices at the same temperature and supply voltage		± 270		ps
Aperture jitter		145		$\mathrm{f}_{\mathrm{S}} \mathrm{rms}$
WAKE-UP TIMING				
Wake-up time to valid data after coming out of global power-down		150		$\mu \mathrm{s}$
LATENCY				
Data latency ${ }^{(1)}$: ADC sample to digital output		134		Input clock cycles
OVR latency: ADC sample to OVR bit		62		Input clock cycles
$\mathrm{t}_{\text {PD }} \quad$ Propagation delay: logic gates and output buffers delay (does not change with f_{S})		4		ns
SYSREF TIMING				
$t_{\text {SU_SYSREF }}$ Setup time for SYSREF, referenced to the input clock falling edge	300		900	ps
$\mathrm{t}_{\text {H_SYSREF }}$ Hold time for SYSREF, referenced to the input clock falling edge	100			ps
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS				
Unit interval	100		400	ps
Serial output data rate	2.5		10	Gbps
Total jitter for BER of 1E-15 and lane rate $=10 \mathrm{Gbps}$		26		ps
Random jitter for BER of 1E-15 and lane rate $=10 \mathrm{Gbps}$		0.75		ps rms
Deterministic jitter for BER of 1E-15 and lane rate $=10 \mathrm{Gbps}$		12		ps, pk-pk
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}} \quad$Data rise time, data fall time: rise and fall times are measured from differential output waveform, $2.5 \mathrm{Gbps} \leq$ bit rate $\leq 10 \mathrm{Gbps}$		35		ps

(1) Overall ADC latency $=$ data latency $+t_{\text {PDI }}$.

Figure 1. SYSREF Timing

Figure 2. Sample Timing Requirements

ADS54J60
www.ti.com

6.9 Typical Characteristics

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and -1 -dBFS differential input, unless otherwise noted.

(

SNR $=71 \mathrm{dBFS} ; \mathrm{SFDR}=86 \mathrm{dBc}$; IL spur $=94 \mathrm{dBc}$; non HD2, HD3 spur $=89 \mathrm{dBc}$

Figure 3. FFT for $\mathbf{1 0 - M H z}$ Input Signal

SNR = $69.8 \mathrm{dBFS} ;$ SFDR $=88 \mathrm{dBc}$;
IL spur $=86 \mathrm{dBc}$; non HD2, HD3 spur $=89 \mathrm{dBc}$
Figure 5. FFT for $\mathbf{1 7 0 - M H z}$ Input Signal

SNR = $68 \mathrm{dBFS} ;$ SFDR $=77 \mathrm{dBc}$; IL spur $=84 \mathrm{dBc}$; non HD2, HD3 spur $=85 \mathrm{dBc}$

Figure 7. FFT for $\mathbf{3 0 0}-\mathrm{MHz}$ Input Signal

SNR = $70.3 \mathrm{dBFS} ;$ SFDR $=90 \mathrm{dBc}$; IL spur $=95 \mathrm{dBc}$; non HD2, HD3 spur $=94 \mathrm{dBc}$

Figure 4. FFT for $140-\mathrm{MHz}$ Input Signal

SNR = $68.9 \mathrm{dBFS} ;$ SFDR $=85 \mathrm{dBc}$; IL spur $=85 \mathrm{dBc}$; non HD2, HD3 spur $=86 \mathrm{dBc}$

Figure 6. FFT for 230-MHz Input Signal

SNR = $66.7 \mathrm{dBFS} ;$ SFDR $=71 \mathrm{dBc}$;
L spur $=87 \mathrm{dBc}$; non HD2, HD3 spur $=78 \mathrm{dBc}$
Figure 8. FFT for 370-MHz Input Signal

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}, \mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

SNR $=65.9 \mathrm{dBFS} ; \mathrm{SFDR}=69 \mathrm{dBc}$;
IL spur $=78 \mathrm{dBc}$; non HD2, HD3 spur $=76 \mathrm{dBc}$
Figure 9. FFT for 470-MHz Input Signal

$\mathrm{f}_{\mathrm{IN} 1}=185 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=190 \mathrm{MHz}$, each tone at -36 dBFS , IMD3 = 106 dBFS

Figure 11. FFT for Two-Tone Input Signal (-36 dBFS)

$\mathrm{f}_{\mathrm{IN} 1}=365 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=370 \mathrm{MHz}$, each tone at -36 dBFS ,
IMD3 $=105 \mathrm{dBFS}$
Figure 13. FFT for Two-Tone Input Signal (-36 dBFS)

$\mathrm{f}_{\mathrm{IN} 1}=185 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=190 \mathrm{MHz}$, each tone at -7 dBFS , IMD3 = 88 dBFS

Figure 10. FFT for Two-Tone Input Signal (-7 dBFS)

$\mathrm{f}_{\mathrm{IN} 1}=365 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=370 \mathrm{MHz}$, each tone at -7 dBFS , IMD3 $=80 \mathrm{dBFS}$

Figure 12. FFT for Two-Tone Input Signal (-7 dBFS)

$\mathrm{f}_{\mathrm{IN} 1}=465 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=470 \mathrm{MHz}$, each tone at -7 dBFS , IMD3 $=75 \mathrm{dBFS}$

Figure 14. FFT for Two-Tone Input Signal (-7 dBFS)

ADS54J60
www.ti.com

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

$\mathrm{f}_{\mathrm{IN} 1}=465 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=470 \mathrm{MHz}$, each tone at -36 dBFS , IMD3 = 106 dBFS

Figure 15. FFT for Two-Tone Input Signal (-36 dBFS)

Figure 17. Intermodulation Distortion vs Input Tone Amplitude

Figure 19. Spurious-Free Dynamic Range vs Input Frequency

$\mathrm{f}_{\mathrm{IN} 1}=185 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=190 \mathrm{MHz}$

Figure 16. Intermodulation Distortion vs Input Tone Amplitude

Figure 18. Intermodulation Distortion vs Input Tone Amplitude

Figure 20. IL Spur vs Input Frequency

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and -1 -dBFS differential input, unless otherwise noted.

Figure 21. Signal-to-Noise Ratio vs Input Frequency

Figure 22. Signal-to-Noise Ratio vs AVDD Supply and Temperature

Figure 24. Signal-to-Noise Ratio vs AVDD Supply and Temperature

Figure 26. Signal-to-Noise Ratio vs DVDD Supply and Temperature

ADS54J60
www.ti.com

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

Figure 27. Spurious-Free Dynamic Range vs DVDD Supply and Temperature

Figure 29. Spurious-Free Dynamic Range vs DVDD Supply and Temperature

$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$
Figure 31. Spurious-Free Dynamic Range vs AVDD3V Supply and Temperature

Figure 28. Signal-to-Noise Ratio vs DVDD Supply and Temperature

Figure 30. Signal-to-Noise Ratio vs AVDD3V Supply and Temperature

Figure 32. Signal-to-Noise Ratio vs AVDD3V Supply and Temperature

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}, \mathrm{IOVDD}=1.15 \mathrm{~V}$, and -1 -dBFS differential input, unless otherwise noted.

Figure 33. Spurious-Free Dynamic Range vs AVDD3V Supply and Temperature

Figure 35. Spurious-Free Dynamic Range vs Gain and Input Frequency

$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$
Figure 37. Performance vs Input Amplitude

Figure 34. Signal-to-Noise Ratio vs Gain and Input Frequency

Figure 36. Maximum Supported Amplitude vs Frequency

Figure 38. Performance vs Input Amplitude

ADS54J60
www.ti.com

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}$, $\mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$
Figure 39. Performance vs Sampling Clock Amplitude

Figure 41. Performance vs Clock Duty Cycle

$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}$

$\mathrm{f}_{\mathrm{IN}}=350 \mathrm{MHz}$
Figure 40. Performance vs Sampling Clock Amplitude

Figure 42. Performance vs Clock Duty Cycle

$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\mathrm{IN}}=-1 \mathrm{dBFS}$, SINAD $=67 \mathrm{dBFS}$,
SFDR $=79 \mathrm{dBc}, \mathrm{f}_{\text {PSRR }}=5 \mathrm{MHz}, \mathrm{A}_{\text {PSRR }}=25 \mathrm{mV}$ PP, amplitude of $f_{\mathrm{IN}}-\mathrm{f}_{\text {PSRR }}=-74 \mathrm{dBFS}$,
amplitude of $\mathrm{f}_{\mathrm{IN}}+\mathrm{f}_{\text {PSRR }}=-76 \mathrm{dBFS}$
Figure 44. Power-Supply Rejection Ratio FFT for Test Signals on the AVDD Supply

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}, \mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

Figure 45. Common-Mode Rejection Ratio vs Test Signal Frequency

Figure 47. Power vs Sampling Speed

Figure 49. FFT for $60-\mathrm{MHz}$ Input Signal in Decimate-by-4 Mode

$\mathrm{f}_{\mathrm{IN}}=170 \mathrm{MHz}, \mathrm{A}_{\mathrm{IN}}=-1 \mathrm{dBFS}, \mathrm{f}_{\mathrm{CMRR}}=5 \mathrm{MHz}, A_{\mathrm{CMRR}}=50 \mathrm{mV}$ PP, SINAD $=69.1 \mathrm{dBFS}$, SFDR $=86 \mathrm{dBc}$, amplitude of $\mathrm{f}_{\mathrm{IN}} \pm \mathrm{f}_{\mathrm{CMRR}}=-80 \mathrm{dBFS}$

Figure 46. Common-Mode Rejection Ratio FFT

Figure 48. Power vs Temperature

Figure 50. FFT for $170-\mathrm{MHz}$ Input Signal in Decimate-by-4 Mode

Typical Characteristics (continued)

Typical values are at $T_{A}=25^{\circ} \mathrm{C}$, full temperature range is from $\mathrm{T}_{\mathrm{MIN}}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$, ADC sampling rate $=1.0 \mathrm{GSPS}$, 50% clock duty cycle, $\mathrm{AVDD} 3 \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{AVDD}=\mathrm{DVDD}=1.9 \mathrm{~V}, \mathrm{IOVDD}=1.15 \mathrm{~V}$, and $-1-\mathrm{dBFS}$ differential input, unless otherwise noted.

Figure 51. FFT for $\mathbf{3 0 0}-\mathrm{MHz}$ Input Signal in Decimate-by-4 Mode

SNR $=71.9 \mathrm{dBFS}, \mathrm{SFDR}=89 \mathrm{dBc}$
Figure 53. FFT for 170-MHz Input Signal in Decimate-by-2 Mode

Figure 52. FFT for $\mathbf{4 5 0}-\mathrm{MHz}$ Input Signal in Decimate-by-4 Mode

SNR $=68.3 \mathrm{dBFS}$, SFDR $=80 \mathrm{dBc}$
Figure 54. FFT for $350-\mathrm{MHz}$ Input Signal in Decimate-by-2 Mode

7 Detailed Description

7.1 Overview

The ADS54J60 is a low-power, wide-bandwidth, 16-bit, 1.0-GSPS, dual-channel, analog-to-digital converter (ADC). Designed for high signal-to-noise ratio (SNR), the device delivers a noise floor of $-159 \mathrm{dBFS} / \mathrm{Hz}$ for applications aiming for highest dynamic range over a wide instantaneous bandwidth. The device supports the JESD204B serial interface with data rates up to 10.0 Gbps , supporting two or four lanes per ADC. The buffered analog input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch energy. Each ADC channel optionally can be connected to a wideband digital down converter (DDC) block. The ADS54J60 provides excellent spurious-free dynamic range (SFDR) over a large input frequency range with very low power consumption.

The JESD204B interface reduces the number of interface lines, allowing high system integration density. An internal phase-locked loop (PLL) multiplies the ADC sampling clock to derive the bit clock that is used to serialize the 16-bit data from each channel.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Analog Inputs

The ADS54J60 analog signal inputs are designed to be driven differentially. The analog input pins have internal analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high impedance input across a very wide frequency range to the external driving source, which enables great flexibility in the external analog filter design as well as excellent $50-\Omega$ matching for RF applications. The buffer also helps isolate the external driving circuit from the internal switching currents of the sampling circuit, resulting in a more constant SFDR performance across input frequencies.
The common-mode voltage of the signal inputs is internally biased to VCM using $600-\Omega$ resistors, allowing for accoupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.475 V) and (VCM -0.475 V), resulting in a 1.9-V V_{PP} (default) differential input swing. The input sampling circuit has a 3 -dB bandwidth that extends up to 1.2 GHz . An equivalent analog input network diagram is shown in Figure 55.

Figure 55. Analog Input Network

Feature Description (continued)

The input bandwidth shown in Figure 56 is measured with respect to a $50-\Omega$ differential input termination at the ADC input pins.

Figure 56. Transfer Function versus Frequency

7.3.2 DDC Block

The ADS54J60 has an optional DDC block that can be enabled via an SPI register write. Each ADC channel is followed by a DDC block consisting of three different decimate-by-2 and by-4 finite impulse response (FIR) halfband filter options. The different decimation filter options can be selected via SPI programming.

7.3.2.1 Decimate-by-2 Filter

This decimation filter has 41 taps. The stop-band attenuation is approximately 90 dB and the pass-band flatness is $\pm 0.05 \mathrm{~dB}$. Table 1 shows corner frequencies for low-pass and high-pass filter options.

Table 1. Corner Frequencies for the Decimate-by-2 Filter

CORNERS (dB)	LOW PASS	HIGH PASS
-0.1	$0.202 \times \mathrm{f}_{\mathrm{S}}$	$0.298 \times \mathrm{f}_{\mathrm{S}}$
-0.5	$0.210 \times \mathrm{f}_{\mathrm{S}}$	$0.290 \times \mathrm{f}_{\mathrm{S}}$
-1	$0.215 \times \mathrm{f}_{\mathrm{S}}$	$0.285 \times \mathrm{f}_{\mathrm{S}}$
-3	$0.227 \times \mathrm{f}_{\mathrm{S}}$	$0.273 \times \mathrm{f}_{\mathrm{S}}$

Figure 57 and Figure 58 show the frequency response of decimate-by- 2 filter from dc to $f_{S} / 2$.

Figure 57. Decimate-by-2 Filter Response

Figure 58. Decimate-by-2 Filter Response (Zoomed)

7.3.2.2 Decimate-by-4 Filter Using a Digital Mixer

This band-pass decimation filter consists of a digital mixer and three concatenated FIR filters with a combined latency of approximately 28 output clock cycles. The alias band attenuation is approximately 55 dB and the pass-band flatness is $\pm 0.1 \mathrm{~dB}$. By default after reset, the band-pass filter is centered at $\mathrm{f}_{\mathrm{S}} / 16$. Using the SPI, the center frequency can be programmed at $N \times f_{S} / 16$ (where $N=1,3,5$, or 7). Table 2 shows corner frequencies for two extreme options. Figure 59 and Figure 60 show frequency response of decimate-by-4 filter for center frequencies $\mathrm{f}_{\mathrm{S}} / 16$ and $3 \times \mathrm{f}_{\mathrm{S}} / 16(\mathrm{~N}=1$ and 3$)$.

Table 2. Corner frequencies for the Decimate-by-4 Filter

CORNERS (dB)	CORNER FREQUENCY AT LOWER SIDE (CENTER FREQUENCY $f_{\mathbf{S}} / 16$)	CORNER FREQUENCY AT HIGHER SIDE (CENTER FREQUENCY $\boldsymbol{f}_{\mathrm{S}} / 16$)
-0.1	$0.011 \times \mathrm{f}_{\mathrm{S}}$	$0.114 \times \mathrm{f}_{\mathrm{S}}$
-0.5	$0.010 \times \mathrm{f}_{\mathrm{S}}$	$0.116 \times \mathrm{f}_{\mathrm{S}}$
-1	$0.008 \times \mathrm{f}_{\mathrm{S}}$	$0.117 \times \mathrm{f}_{\mathrm{S}}$
-3	$0.006 \times \mathrm{f}_{\mathrm{S}}$	$0.120 \times \mathrm{f}_{\mathrm{S}}$

Figure 59 and Figure 60 show the frequency response of a decimate-by-4 filter from dc to $\mathrm{f}_{\mathrm{S}} / 2$.

Figure 59. Decimate-by-4 Filter Response

Figure 60. Decimate-by-4 Filter Response (Zoomed)

7.3.2.3 Decimate-by-4 Filter with IQ Outputs

In this configuration, the DDC block includes a fixed digital $\mathrm{f}_{\mathrm{S}} / 4$ mixer. Thus, the IQ pass band is approximately $\pm 110 \mathrm{MHz}$, centered at $\mathrm{f}_{\mathrm{S}} / 4$. This decimation filter has 41 taps with a latency of approximately ten output clock cycles. The stop-band attenuation is approximately 90 dB and the pass-band flatness is $\pm 0.05 \mathrm{~dB}$. Table 3 shows the corner frequencies for a low-pass decimate-by-4 with IQ filter.

Table 3. Corner Frequencies for a Decimate-by-4 IQ Output Filter

CORNERS (dB)	LOW PASS
-0.1	$0.107 \times \mathrm{f}_{\mathrm{S}}$
-0.5	$0.112 \times \mathrm{f}_{\mathrm{S}}$
-1	$0.115 \times \mathrm{f}_{\mathrm{S}}$
-3	$0.120 \times \mathrm{f}_{\mathrm{S}}$

Figure 61 and Figure 62 show the frequency response of a decimate-by-4 IQ output filter from dc to $\mathrm{f}_{\mathrm{S}} / 2$.

Figure 61. Decimate-by-4 with IQ Outputs Filter Response

Figure 62. Decimate-by-4 with IQ Outputs Filter Response (Zoomed)

7.3.3 SYSREF Signal

The SYSREF signal is a periodic signal that is sampled by the ADS54J60 device clock and used to align the boundary of the local multi-frame clock inside the data converter. SYSREF is required to be a sub-harmonic of the local multiframe clock (LMFC) internal timing. To meet this requirement, the timing of SYSREF is dependent on the device clock frequency and the LMFC frequency, as determined by the selected DDC decimation and frames per multi-frame settings. TI recommends that the SYSREF signal be a low-frequency signal in the range of 1 MHz to 5 MHz in order to reduce coupling to the signal path both on the printed circuit board (PCB) as well as internal in the device.
The external SYSREF signal must be a sub-harmonic of the internal LMFC clock, as shown in Equation 1 and Table 4.

SYSREF = LMFC / 2^{N}
where

- $N=0,1,2$, and so forth.

Table 4. LMFSC Clock Frequency

LMFS CONFIGURATION	DECIMATION	LMFC CLOCK ${ }^{(1)(2)}$
4211	-	$\mathrm{f}_{\mathrm{S}} / \mathrm{k}$
4244	-	$\mathrm{f}_{\mathrm{S}} /(4 / \mathrm{k})$
8224	-	$\mathrm{f}_{\mathrm{S}} /(4 / \mathrm{k})$
\ldots	\ldots	\ldots
4222	2 X	$\left(\mathrm{f}_{\mathrm{S}} / 2\right) /(2 / \mathrm{k})$
2221	2 X	$\left(\mathrm{f}_{\mathrm{S}} / 2\right) /(2 / \mathrm{k})$
2221	4 X	$\left(\mathrm{f}_{\mathrm{S}} / 4\right) /(2 / \mathrm{k})$
2441	4 X	$\left(\mathrm{f}_{\mathrm{S}} / 4\right) / \mathrm{k}$
4421	4 X	$\left(\mathrm{f}_{\mathrm{S}} / 4\right) / \mathrm{k}$
1241	$4 X$	$\left(\mathrm{f}_{\mathrm{S}} / 4\right) / \mathrm{k}$

(1) $K=$ Number of frames per multi frame (JESD digital page 6900 h , address 06 h , bits $4-0$).
(2) $f_{S}=$ sampling (device) clock frequency.

ADS54J60
www.ti.com

7.3.4 Overrange Indication

The ADS54J60 provides a fast overrange indication that can be presented in the digital output data stream via SPI configuration. Alternatively, if not used, the SDOUT (pin 11) and PDN (pin 50) pins can be configured via the SPI to output the fast OVR indicator.
When the FOVR indication is embedded in the output data stream, it replaces the LSB of the 16 -bit data stream going to the 8b/10b encoder, as shown in Figure 63.

Figure 63. Overrange Indication in a Data Stream

7.3.4.1 Fast OVR

The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and is presented after only seven clock cycles, thus enabling a quicker reaction to an overrange event.

The input voltage level at which the overload is detected is referred to as the threshold. The threshold is programmable using the FOVR THRESHOLD bits, as shown in Figure 64. The FOVR is triggered seven output clock cycles after the overload condition occurs.

Figure 64. Programming Fast OVR Thresholds
The input voltage level at which the fast OVR is triggered is defined by Equation 2:
Full-Scale \times [Decimal Value of the FOVR Threshold Bits] / 255)
The default threshold is E3h (227d), corresponding to a threshold of -1 dBFS .
In terms of full-scale input, the fast OVR threshold can be calculated as Equation 3:
20log (FOVR Threshold / 255)

7.3.5 Power-Down Mode

The ADS54J60 provides a highly-configurable power-down mode. Power-down can be enabled using the PDN pin or SPI register writes.

A power-down mask can be configured, which allows a trade-off between wake-up time and power consumption in power-down mode. Two independent power-down masks can be configured: MASK 1 and MASK 2 as shown in Table 5. See the master page registers in Table 15 for further details.

Table 5. Register Address for Power-Down Modes

REGISTER ADDRESS	COMMENT	REGISTER DATA							
A[7:0] (Hex)		7	6	5	4	3	2	1	0
MASTER PAGE (80h)									
20	MASK 1	PDN ADC CHA				PDN ADC CHB			
21		PDN BU	ER CHB	PDN BU	R CHA	0	0	0	0
23	MASK 2	PDN ADC CHA				PDN ADC CHB			
24		PDN BUFFER CHB		PDN BUFFER CHA		0	0	0	0
26	CONFIG	GLOBAL PDN	OVERRIDE PDN PIN	$\begin{gathered} \text { PDN MASK } \\ \text { SEL } \end{gathered}$	0	0	0	0	0
53		0	$\begin{gathered} \text { MASK } \\ \text { SYSREF } \end{gathered}$	0	0	0	0	0	0
55		0	0	0	PDN MASK	0	0	0	0

To save power, the device can be put in complete power down by using the GLOBAL PDN register bit. However, when JESD must remain linked up while putting the device in power down, the ADC and analog buffer can be powered down by using the PDN ADC CHx and PDN BUFFER CHx register bits after enabling the PDN MASK register bit. The PDN MASK SEL register bit can be used to select between MASK 1 or MASK 2. Table 6 shows power consumption for different combinations of the GLOBAL PDN, PDN ADC CHx, and PDN BUFF CHx register bits.

Table 6. Power Consumption in Different Power-Down Settings

REGISTER BIT	COMMENT	IAVDD3V (mA)	$\mathrm{I}_{\text {AVDD }}(\mathrm{mA})$	$\mathrm{I}_{\text {DVDD }}(\mathrm{mA})$	I Iovdd (mA)	TOTAL POWER (W)
Default	After reset, with a full-scale input signal to both channels	336	358	198	533	2.68
GBL PDN = 1	The device is in complete power-down state	2	6	22	199	0.29
$\begin{aligned} & \text { GBL PDN }=0, \\ & \text { PDN ADC CH }=1 \\ & (x=A \text { or } B) \end{aligned}$	The ADC of one channel is powered down	274	223	135	512	2.09
$\begin{aligned} & \text { GBL PDN }=0, \\ & \text { PDN BUFF CHx }=1 \\ & (x=A \text { or } B) \end{aligned}$	The input buffer of one channel is powered down	262	352	194	545	2.45
$\begin{aligned} & \text { GBL PDN }=0, \\ & \text { PDN ADC CHx }=1, \\ & \text { PDN BUFF CHx }=1 \\ & (x=A \text { or } B) \end{aligned}$	The ADC and input buffer of one channel is powered down	198	222	132	508	1.85
$\begin{aligned} & \text { GBL PDN }=0, \\ & \text { PDN ADC CHX }=1 \text {, } \\ & \text { PDN BUFF CHx }=1 \\ & (x=A \text { and } B) \end{aligned}$	The ADC and input buffer of both channels are powered down	60	85	66	484	1.02

ADS54J60
www.ti.com

7.4 Device Functional Modes

7.4.1 Device Configuration

The ADS54J60 can be configured by using a serial programming interface, as described in the Serial Interface section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down mode.
The ADS54J60 supports a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging (see the Register Maps section) to access all register bits.

7.4.1.1 Serial Interface

The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins, as shown in Figure 65. Legends used in Figure 65 are explained in Table 7. Serially shifting bits into the device is enabled when SEN is low. Serial data on SDIN are latched at every SCLK rising edge when SEN is active (low). The interface can function with SCLK frequencies from 2 MHz down to very low speeds (of a few hertz) and also with a non-50\% SCLK duty cycle.

Figure 65. SPI Timing Diagram

Table 7. SPI Timing Diagram Legend

SPI BITS	DESCRIPTION	BIT SETTINGS
R/W	Read/write bit	$0=$ SPI write $1=$ SPI read back
M	SPI bank access	$0=$ Analog SPI bank (master and ADC pages) $1=$ JESD SPI bank (main digital, interleaving engine, analog JESD, and digital JESD pages)
P	JESD page selection bit	$0=$ Page access $1=$ Register access
CH	SPI access for a specific channel of the JESD SPI bank	$0=$ Channel A $1=$ Channel B By default, both channels are being addressed.
A[11:0]	SPI address bits	-
D[7:0]	SPI data bits	-

Table 8 shows the timing requirements for the serial interface signals in Figure 65.
Table 8. SPI Timing Requirements

		MIN	TYP
$f_{\text {SCLK }}$	SCLK frequency (equal to $\left.1 / t_{\text {SCLK }}\right)$	$>\mathrm{dc}$	MAX
$\mathrm{t}_{\text {SLOADS }}$	SEN to SCLK setup time	100	2
$t_{\text {SLOADH }}$	SCLK to SEN hold time	100	MHz
$t_{\text {DSU }}$	SDIN setup time	100	ns
$t_{\text {DH }}$	SDIN hold time	100	ns

7.4.1.2 Serial Register Write: Analog Bank

The analog SPI bank contains of two pages (the master and ADC page). The internal register of the ADS54J60 analog SPI bank can be programmed by:

1. Drive the SEN pin low.
2. Initiate a serial interface cycle specifying the page address of the register whose content must be written.

- Master page: write address 0011h with 80h.
- ADC page: write address 0011h with 0Fh.

3. Write the register content as shown in Figure 66. When a page is selected, multiple writes into the same page can be done.

Figure 66. Serial Register Write Timing Diagram

ADS54J60
www.ti.com

7.4.1.3 Serial Register Readout: Analog Bank

The content from one of the two analog banks can be read out by:

1. Drive the SEN pin low.
2. Select the page address of the register whose content must be read.

- Master page: write address 0011 h with 80 h .
- ADC page: write address 0011h with 0Fh.

3. Set the R/W bit to 1 and write the address to be read back.
4. Read back the register content on the SDOUT pin, as shown in Figure 67. When a page is selected, multiple read backs from the same page can be done.

Figure 67. Serial Register Read Timing Diagram

7.4.1.4 JESD Bank SPI Page Selection

The JESD SPI bank contains four pages (main digital, interleaving engine, digital, and analog JESD pages). The individual pages can be selected by:

1. Drive the SEN pin low.
2. Set the M bit to 1 and specify the page with two register writes. Note that the P bit must be set to 0 , as shown in Figure 68.

- Write address 4003h with 00h (LSB byte of page address).
- Write address 4004h with the MSB byte of the page address.
- For Main digital page: write address 4004h with 68h.
- For Digital JESD page: write address 4004h with 69h.
- For Analog JESD page: write address 4004 h with 6 Ah.

Figure 68. SPI Page Selection

7.4.1.5 Serial Register Write: JESD Bank

The ADS54J60 is a dual-channel device and the JESD204B portion is configured individually for each channel by using the CH bit. Note that the P bit must be set to 1 for register writes.

1. Drive the SEN pin low.
2. Select the JESD bank page. Note that the M bit $=1$ and the P bit $=0$.

- Write address 4003h with 00h.
- Write address 4005h with 01h to enable separate control for both channels.
- For Main digital page: write address 4004h with 68 h .
- For Digital JESD page: write address 4004h with 69h.
- For Analog JESD page: write address 4004 h with 6Ah.

3. Set the M and P bits to 1 , select channel $A(C H=0)$ or channel $B(C H=1)$, and write the register content as shown in Figure 69. When a page is selected, multiple writes into the same page can be done.

Figure 69. JESD Serial Register Write Timing Diagram

7.4.1.5.1 Individual Channel Programming

By default, register writes are applied to both channels. To enable individual channel writes, write address 4005h with 01 h (default is 00 h).

7.4.1.6 Serial Register Readout: JESD Bank

The content from one of the pages of the JESD bank can be read out by:

1. Drive the SEN pin low.
2. Select the JESD bank page. Note that the M bit $=1$ and the P bit $=0$.

- Write address 4003h with 00h.
- Write address 4005 h with 01 h to enable separate control for both channels.
- For Main digital page: write address 4004 h with 68 h .
- For Digital JESD page: write address 4004h with 69h.
- For Analog JESD page: write address 4004 h with 6Ah.

3. Set the R/W, M, and P bits to 1 , select channel A or channel B, and write the address to be read back.
4. Read back the register content on the SDOUT pin; see Figure 70. When a page is selected, multiple read backs from the same page can be done.

Figure 70. JESD Serial Register Read Timing Diagram

7.4.2 JESD204B Interface

The ADS54J60 supports device subclass 1 with a maximum output data rate of 10.0 Gbps for each serial transmitter.
An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific sampling clock edge, allowing synchronization of multiple devices in a system and minimizing timing and alignment uncertainty. The SYNC input is used to control the JESD204B SERDES blocks.
Depending on the ADC output data rate, the JESD204B output interface can be operated with either two or four lanes per single ADC, as shown in Figure 71. The JESD204B setup and configuration of the frame assembly parameters is controlled via the SPI interface.

Figure 71. ADS54J60 Block Diagram

The JESD204B transmitter block shown in Figure 72 consists of the transport layer, the data scrambler, and the link layer. The transport layer maps the ADC output data into the selected JESD204B frame data format. The link layer performs the $8 \mathrm{~b} / 10 \mathrm{~b}$ data encoding as well as the synchronization and initial lane alignment using the SYNC input signal. Optionally, data from the transport layer can be scrambled.

Figure 72. JESD204B Transmitter Block

7.4.2.1 JESD204B Initial Lane Alignment (ILA)

The initial lane alignment process is started when the receiving device de-asserts the $\overline{\text { SYNC }}$ signal, as shown in Figure 73. When a logic low is detected on the SYNC input pin, the ADS54J60 starts transmitting comma (K28.5) characters to establish a code group synchronization.
When synchronization is complete, the receiving device asserts the $\overline{\text { SYNC }}$ signal and the ADS54J60 starts the initial lane alignment sequence with the next local multi-frame clock boundary. The ADS54J60 transmits four multi-frames, each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame start and end symbols and the second multi-frame also contains the JESD204 link configuration data.

Figure 73. Lane Alignment Sequence

7.4.2.2 JESD204B Test Patterns

There are three different test patterns available in the transport layer of the JESD204B interface. The ADS54J60 supports a clock output, encoded, and a PRBS $\left(2^{15}-1\right)$ pattern. These test patterns can be enabled via an SPI register write and are located in the JESD digital page of the JESD bank.

7.4.2.3 JESD204B Frame

The JESD204B standard defines the following parameters:

- L is the number of lanes per link.
- M is the number of converters per device.
- F is the number of octets per frame clock period, per lane.
- S is the number of samples per frame per converter.

7.4.2.4 JESD204B Frame

Table 9 lists the available JESD204B formats and valid ranges for the ADS54J60 when the decimation filter is not used. The ranges are limited by the SERDES lane rate and the maximum ADC sample frequency.

Table 9. Default Interface Rates

\mathbf{L}	\mathbf{M}	\mathbf{F}	\mathbf{S}	JESD MODE	JESD PLL MODE SETTING	MIN ADC SAMPLING RATE (Msps)	MIN fsERDES (Gbps)	MAX ADC SAMPLING RATE (Msps)	MAX f: (Gbps)
4	2	1	1	100	$40 x$	250	2.5	1000	10.0
4	2	4	4	010	$40 x$	250	2.5	1000	10.0
8	2	2	4	001	$20 x$	500	2.5	1000	5.0

NOTE
In the LMFS $=8224$ row of Table 9, the sample order in lane DA2 and DA3 are swapped.
The detailed frame assembly is shown in Table 10.
Table 10. Default Frame Assembly

PIN	LMFS $=4211$				LMFS = 4244				LMFS = 8224			
DA0									$\mathrm{A}_{3}[15: 8]$	$\mathrm{A}_{3}[7: 0]$	$\mathrm{A}_{7}[15: 8]$	$\mathrm{A}_{7}[7: 0]$
DA1	$\mathrm{A}_{0}[7: 0]$	$\mathrm{A}_{1}[7: 0]$	$\mathrm{A}_{2}[7: 0]$	$\mathrm{A}_{3}[7: 0]$	$\mathrm{A}_{2}[15: 8]$	$\mathrm{A}_{2}[7: 0]$	$\mathrm{A}_{3}[15: 8]$	$\mathrm{A}_{3}[7: 0]$	$\mathrm{A}_{2}[15: 8]$	$\mathrm{A}_{2}[7: 0]$	$\mathrm{A}_{6}[15: 8]$	$\mathrm{A}_{6}[7: 0]$
DA2	$\mathrm{A}_{0}[15: 8]$	$\mathrm{A}_{1}[15: 8]$	$\mathrm{A}_{2}[15: 8]$	$\mathrm{A}_{3}[15: 8]$	$\mathrm{A}_{0}[15: 8]$	$\mathrm{A}_{0}[7: 0]$	$\mathrm{A}_{1}[15: 8]$	$\mathrm{A}_{1}[7: 0]$	$\mathrm{A}_{0}[15: 8]$	$\mathrm{A}_{0}[7: 0]$	$\mathrm{A}_{4}[15: 8]$	$\mathrm{A}_{4}[7: 0]$
DA3									$\mathrm{A}_{1}[15: 8]$	$\mathrm{A}_{1}[7: 0]$	$\mathrm{A}_{5}[15: 8]$	$\mathrm{A}_{5}[7: 0]$
DB0									$\mathrm{B}_{3}[15: 8]$	$\mathrm{B}_{3}[7: 0]$	$\mathrm{B}_{7}[15: 8]$	$\mathrm{B}_{7}[7: 0]$
DB1	$\mathrm{B}_{0}[7: 0]$	$\mathrm{B}_{1}[7: 0]$	$\mathrm{B}_{2}[7: 0]$	$\mathrm{B}_{3}[7: 0]$	$\mathrm{B}_{2}[15: 8]$	$\mathrm{B}_{2}[7: 0]$	$\mathrm{B}_{3}[15: 8]$	$\mathrm{B}_{3}[7: 0]$	$\mathrm{B}_{2}[15: 8]$	$\mathrm{B}_{2}[7: 0]$	$\mathrm{B}_{6}[15: 8]$	$\mathrm{B}_{6}[7: 0]$
DB2	$\mathrm{B}_{0}[15: 8]$	$\mathrm{B}_{1}[15: 8]$	$\mathrm{B}_{2}[15: 8]$	$\mathrm{B}_{3}[15: 8]$	$\mathrm{B}_{0}[15: 8]$	$B_{0}[7: 0]$	$\mathrm{B}_{1}[15: 8]$	$\mathrm{B}_{1}[7: 0]$	$\mathrm{B}_{0}[15: 8]$	$\mathrm{B}_{0}[7: 0]$	$\mathrm{B}_{4}[15: 8]$	$\mathrm{B}_{4}[7: 0]$
DB3									$\mathrm{B}_{1}[15: 8]$	$\mathrm{B}_{1}[7: 0]$	$\mathrm{B}_{5}[15: 8]$	$\mathrm{B}_{5}[7: 0]$

7.4.2.5 JESD204B Frame Assembly with Decimation

Table 11 lists the available JESD204B formats and valid ranges for the ADS54J60 when enabling the decimation filter. The ranges are limited by the SERDES line rate and the maximum ADC sample frequency.

Table 12 lists the detailed frame assembly with different decimation options.
Table 11. Interface Rates with Decimation Filter

\mathbf{L}	\mathbf{M}	\mathbf{F}	\mathbf{S}	JESD MODE REGISTER BIT	LANE SHARE	JESD PLL MODE SETTING	DECIMATION	MAX ADC OUTPUT RATE (Msps)	MAX f:RES (Gbps)
4	4	2	1	001	0	$20 x$	$4 X(I Q)$	250 (IQ)	5.0
4	2	2	2	001	0	$20 x$	$2 X$	500	5.0
2	2	2	1	010	0	$40 x$	$2 X$	500	10.0
2	2	2	1	010	0	$20 x$	$4 X$	250	5.0
2	4	4	1	010	0	$40 x$	$4 X(I Q)$	250 (IQ)	10.0
1	2	4	1	010	1	$40 x$	$4 X$	250	10.0

Table 12. Frame Assembly with Decimation Filter

PIN	$\text { LMFS = 4222, } 2 \mathrm{X}$ DECIMATION				$\begin{gathered} \text { LMFS }=22212 \mathrm{X}, 4 \mathrm{X} \\ \text { DECIMATION } \end{gathered}$				LMFS $=\mathbf{2 4 4 1 , 4 X}$ DECIMATION (IQ)				LMFS = 4421, 4X DECIMATION (IQ)				LMFS = 1241, 4X DECIMATION			
DAO	$\begin{gathered} \mathrm{A} 1 \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { A1 } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { A3 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { A3 } \\ {[7: 0]} \end{gathered}$									$\begin{gathered} \text { AQ0 } \\ {[15: 8]} \end{gathered}$	AQ0 [7:0]	$\begin{gathered} \text { AQ1 } \\ {[15: 8]} \end{gathered}$	AQ1 [7:0]				
DA1	$\begin{gathered} \mathrm{AO} \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { A0 } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { A2 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { A2 } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { A0 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { A0 } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { A1 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{A} 1 \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { AIO } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { AIO } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { AQ0 } \\ {[15: 8]} \end{gathered}$	$\begin{aligned} & \text { AQ0 } \\ & {[7: 0]} \end{aligned}$	$\begin{gathered} \text { AIO } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { AIO } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { Al1 } \\ {[15: 8]} \end{gathered}$	$\begin{aligned} & \mathrm{Al1} \\ & {[7: 0]} \end{aligned}$	$\begin{gathered} \text { A0 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { A0 } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{B0} \\ {[7: 0]} \end{gathered}$
DA2																				
DA3																				
DB0	$\begin{gathered} \mathrm{B} 1 \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { B3 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { B3 } \\ {[7: 0]} \end{gathered}$									$\begin{gathered} \text { BQO } \\ {[15: 8]} \end{gathered}$	$\begin{aligned} & \text { BQ0 } \\ & {[7: 0]} \end{aligned}$	$\begin{gathered} \text { BQ1 } \\ {[15: 8]} \end{gathered}$	$\begin{aligned} & \text { BQ1 } \\ & {[7: 0]} \end{aligned}$				
DB1	$\begin{gathered} \mathrm{BO} \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{B0} \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { B2 } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { B2 } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { BIO } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \text { BIO } \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { BQ0 } \\ {[15: 8]} \end{gathered}$	$\begin{aligned} & \mathrm{BQO} \\ & {[7: 0]} \end{aligned}$	$\begin{gathered} \text { BIO } \\ {[15: 8]} \end{gathered}$	$\begin{gathered} \mathrm{BIO} \\ {[7: 0]} \end{gathered}$	$\begin{gathered} \text { BI11 } \\ {[15: 8]} \end{gathered}$	$\begin{aligned} & \mathrm{BI} 1 \\ & {[7: 0]} \end{aligned}$				
DB2																				
DB3																				

ADS54J60
www.ti.com

7.4.2.5.1 Lane Enable with Decimation

When using on-chip decimation, the digital output must be internally routed to the correct lane using the Dx_BUS_REORDER [7:0] bits as shown in Table 13.

Table 13. Lane Enable with Decimation

L	M	F	S	DECIMATION	JESD MODE REGISTER BIT	LANE SHARE REGISTER BIT	DA_BUS REOBRE \bar{R} REGISTER BIT	$\begin{gathered} \text { DB_BUS } \\ \text { REORDE } \\ \text { REGISTER BIT } \end{gathered}$
4	4	2	1	4X (IQ)	001	0	OBh	0Bh
4	2	2	2	2X	001	0	OBh	OBh
2	2	2	1	2X	010	0	OBh	OBh
2	2	2	1	4X	010	0	0Bh	OBh
2	4	4	1	4X (IQ)	010	0	OBh	OBh
1	2	4	1	4X	010	1	OAh	OAh

Table 14 details an example register write for configuring 2X decimation (LPF) with 20X PLL (two lanes per ADC, LMFS $=4222$).

Table 14. Example Register Write

ADDRESS (Hex)	DATA (Hex)	
4004 h	68 h	Select the main digital page (6800h)
4003 h	00 h	Select the main digital page (6800h)
6041 h	12 h	Set decimate-by-2 (low-pass filter)
604 hh	08 h	Enable decimation filter control
4004 h	69 h	Select the JESD DIGITAL page (6900h)
4003 h	00 h	Select the JESD DIGITAL page (6900h)
6031 h	0 h	Output Bus reorder for channel A
6032 h	0 hh	Output Bus reorder for channel B
6000 h	01 h	lulse the digital core reset so the register writes to the main digital page $(6800 \mathrm{~h}$ goes into effect)
6000 h	00 h	Pulse the digital core reset so the register writes to the main digital page $(6800 \mathrm{~h}$ goes into effect)

7.4.2.5.2 JESD Transmitter Interface

Each of the 10.0-Gbps SERDES JESD transmitter outputs requires ac coupling between the transmitter and receiver. The differential pair must be terminated with $100-\Omega$ resistors as close to the receiving device as possible to avoid unwanted reflections and signal degradation, as shown in Figure 74.

Figure 74. Output Connection to Receiver

7.4.2.5.3 Eye Diagram

Figure 75 to Figure 78 show the serial output eye diagrams of the ADS54J60 at 5.0 Gbps and 10 Gbps with default and increased output voltage swing against the JESD204B mask.

7.5 Register Maps

The ADS54J60 contains two main SPI banks. The analog SPI bank gives access to the ADC analog blocks and the digital SPI bank controls the interleaving engine and anything related to the JESD204B serial interface. The analog SPI bank is divided into two pages (master and ADC) and the digital SPI bank is divided into three pages (main digital, JESD digital, and JESD analog). Table 15 lists a register map for the ADS54J60.

Table 15. Register Map

REGISTER ADDRESS	REGISTER DATA							
A[11:0] (Hex)	7	6	5	4	3	2	1	0
GENERAL REGISTERS								
0	RESET	0	0	0	0	0	0	RESET
3	JESD BANK PAGE SEL[7:0]							
4	JESD BANK PAGE SEL[15:8]							
5	0	0	0	0	0	0	0	DISABLE BROADCAST
11	ANALOG BANK PAGE SEL							
MASTER PAGE (80h)								
20	PDN ADC CHA				PDN ADC CHB			
21	PDN BUFFER CHB		PDN BUFFER CHA		0	0	0	0
23	PDN ADC CHA				PDN ADC CHB			
24	PDN BUFFER CHB		PDN BUFFER CHA		0	0	0	0
26	GLOBAL PDN	$\underset{\text { PIN }}{\text { OVERRIDE PDN }}$	PDN MASK SEL	0	0	0	0	0
4F	0	0	0	0	0	0	0	EN INPUT DC COUPLING
53	0	MASK SYSREF	0	0	0	0	EN SYSREF DC COUPLING	0
55	0	0	0	PDN MASK	0	0	0	0
59	FOVR CHB	0	ALWAYS WRITE 1	0	0	0	0	0
ADC PAGE (0Fh)								
5F	FOVR THRESHOLD PROG							

Register Maps (continued)

Table 15. Register Map (continued)

REGISTER ADDRESS	REGISTER DATA							
A[11:0] (Hex)	7	6	5	4	3	2	1	0
MAIN DIGITAL PAGE (6800h)								
0	0	0	0	0	0	0	0	PULSE RESET
41	0	0	DECFIL MODE[3]	DECFIL EN	0	DECFIL MODE[2:0]		
42	0	0	0	0	0	NYQUIST ZONE		
43	0	0	0	0	0	0	0	FORMAT SEL
44	0	DIGITAL GAIN						
4B	0	0	FORMAT EN	0	0	0	0	0
4D	0	0	0	0	DEC MODE EN	0	0	0
4E	CTRL NYQUIST	0	0	0	0	0	0	0
52	0	0	0	0	0	0	0	DIG GAIN EN
AB	0	0	0	0	0	0	0	LSB SEL EN
AD	0	0	0	0	0	0	LSB SELECT	
F7	0	0	0	0	0	0	0	DIG RESET
JESD DIGITAL PAGE (6900h)								
0	CTRL K	0	0	TESTMODE EN	FLIP ADC DATA	LANE ALIGN	FRAME ALIGN	TX LINK DIS
1	SYNC REG	SYNC REG EN	JESD FILTER			JESD MODE		
2	LINK LAYER TESTMODE			LINK LAYER RPAT	LMFC MASK RESET	0	0	0
3	FORCE LMFC COUNT	LMFC COUNT INIT					RELEASE ILANE SEQ	
5	SCRAMBLE EN	0	0	0	0	0	0	0
6	0	0	0	FRAMES PER MULTI FRAME (K)				
7	0	0	0	0	SUBCLASS	0	0	0
16	1	0	LANE SHARE	0	0	0	0	0
31	DA_BUS_REORDER[7:0]							
32	DB_BUS_REORDER[7:0]							

Register Maps (continued)

Table 15. Register Map (continued)

REGISTER ADDRESS A[11:0] (Hex)	REGISTER DATA							
	7	6	5	4	3	2	1	0
JESD ANALOG PAGE (6A00h)								
12	SEL EMP LANE 1						0	0
13	SEL EMP LANE 0						0	0
14	SEL EMP LANE 2						0	0
15	SEL EMP LANE 3						0	0
16	0	0	0	0	0	0	JESD PLL MODE	
1A	0	0	0	0	0	0	FOVR CHA	0
1B	JESD SWING			0	FOVR CHA EN	0	0	0

7.5.1 Example Register Writes

This section provides three different example register writes. Table 16 describes a global power-down register write, Table 17 describes a register write when the default lane setting (four lanes) is changed to two lanes, and Table 18 describes the register write for when 2 X decimation is selected for channel B with two lanes per channel. In Table 18, channel A remains in normal output mode (LMFS $=4211$) whereas channel B uses decimate-by-2 (LMFS = 2221).

Table 16. Global Power Down

ADDRESS (Hex)	DATA (Hex)	
11 h	80 h	Set the master page
26 h	COMMENT	

Table 17. Two Lanes per Channel Mode (LMFS = 4211)

ADDRESS (Hex)	DATA (Hex)	
4004 h	69 h	Select the digital JESD page
4003 h	00 h	Select the digital JESD page
6001 h	02 h	Select the digital to 40X mode
4004 h	6 h	Select the analog JESD page
6016 h	02 h	Set the SERDES PLL to 40X mode

Table 18. 2X Decimation for Channel B Only (LPF) with Two Lanes per Channel

ADDRESS (Hex)	DATA (Hex)	
4004 h	68 h	Select the main digital page
4003 h	00 h	Select the main digital page
4005 h	01 h	Enable the individual channel programming mode
7041 h	12 h	Set the decimate-by-2 (low-pass filter) for channel B only
704 h	08 h	Enable the decimation filter control
7072 h	80 h	Enable lane 1 for decimated output data
7052 h	80 h	Enable lane reduction for decimation mode
4005 h	00 h	Disable the individual channel programming mode
6000 h	01 h	Pulse the PULSE RESET register bit so the register writes to the main digital page (6800h) take effect.
6000 h	00 h	Pulse the PULSE RESET register bit so the register writes to the main digital page $(6800 \mathrm{~h})$ take effect.
4004 h	69 h	Select the JESD digital page
4003 h	00 h	Select the JESD digital page
6001 h	02 h	Select two lanes per ADC in 40X mode
4004 h	6 h	Select the JESD analog page
6016 h	02 h	Set the SERDES PLL to 40X mode

7.5.2 Register Descriptions

7.5.2.1 General Registers

7.5.2.1.1 Register Oh (address = Oh)

Figure 79. Register Oh

7	6	5	4	3	1	0	
RESET	0	0	0	0	0	0	RESET
W-Oh	W-Oh	$\mathrm{W}-0 \mathrm{O}$	$\mathrm{W}-\mathrm{Oh}$	$\mathrm{W}-0 \mathrm{~h}$	W -Oh	$\mathrm{W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$

LEGEND: $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 19. Register Oh Field Descriptions

Bit	Field	Type	Reset	Description
7	RESET	W	Oh	$0=$ Normal operation $1=$ Internal software reset, clears back to 0
$6-1$	0	W	Oh	Must write 0
0	RESET	W	Oh	$0=$ Normal operation $=$ Internal software reset, clears back to 0

7.5.2.1.2 Register 3h (address = 3h)

Figure 80. Register 3h

7	6	5	4	3	2	1

LEGEND: R/W = Read/Write; -n = value after reset
Table 20. Register 3h Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	JESD BANK PAGE SEL[7:0]	R/W	Oh	Program these bits to access the desired page in the JESD bank. $6800 \mathrm{~h}=$ Main digital page selected $6900 \mathrm{~h}=$ JESD digital page selected 6A00h $=$ JESD analog page selected

7.5.2.1.3 Register 4h (address = 4h)

Figure 81. Register 4h

7	6	5	4	3	2	1	0
JESD BANK PAGE SEL[15:8]							
R/W-Oh							

LEGEND: R/W = Read/Write; -n = value after reset
Table 21. Register 4h Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	JESD BANK PAGE SEL[15:8]	R/W	Oh	Program these bits to access the desired page in the JESD bank. $6800 \mathrm{~h}=$ Main digital page selected
				$6900 \mathrm{~h}=$ JESD digital page selected $6 A 00 \mathrm{~h}=\mathrm{JESD}$ analog page selected

7.5.2.1.4 Register 5h (address = 5h)

Figure 82. Register 5h

7	6	5	4	3	1	0	
0	0	0	0	0	0	0	DISABLE BROADCAST
W-Oh	$\mathrm{W}-\mathrm{Oh}$	$\mathrm{W}-\mathrm{Oh}$	$\mathrm{W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{R} / \mathrm{W}-0 \mathrm{~h}$

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 22. Register 5h Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
0	DISABLE BROADCAST	R/W	Oh	$0=$ Normal operation. Channel A and B are programmed as a pair. $1=$ Channel A and B can be individually programmed based on the CH bit.

7.5.2.1.5 Register 11h (address $\boldsymbol{= 1 1}$)

Figure 83. Register 11h

7	6	5	4	3	2	1	0
ANALOG PAGE SELECTION							
R/W-Oh							

LEGEND: R/W = Read/Write; -n = value after reset
Table 23. Register 11h Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	ANALOG BANK PAGE SEL	R/W	Oh	Program these bits to access the desired page in the analog bank. Master page $=80 \mathrm{~h}$ ADC page $=0 \mathrm{Fh}$

7.5.2.2 Master Page (080h) Registers

7.5.2.2.1 Register 20h (address $=\mathbf{2 0 h}$), Master Page (080h)

Figure 84. Register 20h

7	6	4	3	2
PDN ADC CHA		1		
R/W-Oh		PDN ADC CHB		

LEGEND: R/W = Read/Write; -n = value after reset
Table 24. Registers 20h Field Descriptions

Bit	Field	Type	Reset	Description
$7-4$	PDN ADC CHA	R/W	Oh	There are two power-down masks that are controlled via the
P-0	PDN ADC CHB	R/W	Oh	PDN mask register bit in address 55h. The power-down mask 1 or mask 2 are selected via register bit 5 in address 26h. Power-down mask 1: addresses 20h and 21h. Power-down mask 2: addresses 23h and 24h.

7.5.2.2.2 Register 21h (address = 21h), Master Page (080h)

Figure 85. Register 21h

| 6 | 5 | 4 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDN BUFFER CHB | PDN BUFFER CHA | 0 | 0 | 0 | |
| R/W-Oh | R/W-Oh | W-Oh | W-0h | W-Oh | |

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 25. Register 21h Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	PDN BUFFER CHB	R/W	Oh	There are two power-down masks that are controlled via the
PDN mask register bit in address 55h. The power-down mask 1				
or mask 2 are selected via register address 26h, bit 5.				
Power-down mask 1: addresses 20h and 21h.				
Power-down mask 2: addresses 23h and 24h.				

7.5.2.2.3 Register 23h (address = 23h), Master Page (080h)

Figure 86. Register 23h

7	6	4	3

LEGEND: R/W = Read/Write; $-\mathrm{n}=$ value after reset
Table 26. Register 23h Field Descriptions

Bit	Field	Type	Reset	Description
$7-4$	PDN ADC CHA	R/W	Oh	There are two power-down masks that are controlled via the
PDN mask register bit in address 55h. The power-down mask 1				
or mask 2 are selected via register address 26h, bit 5.				
Power-down mask 1: addresses 20h and 21h.				
Power-down mask 2: addresses 23h and 24h.				

7.5.2.2.4 Register 24h (address = 24h), Master Page (080h)

Figure 87. Register 24h

| 7 | 6 | 5 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PDN BUFFER CHB | PDN BUFFER CHA | 0 | 0 | 0 | |
| R/W-Oh | R/W-Oh | W-0h | W-Oh | W-0h | |

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 27. Register 24h Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	PDN BUFFER CHB	R/W	Oh	There are two power-down masks that are controlled via the
$5-4$	PDN BUFFER CHA	R/W	Oh	PDN mask register bit in address 55h. The power-down mask 1 or mask 2 are selected via register address 26h, bit 5. Power-down mask 1: addresses 20h and 21h. Power-down mask 2: addresses 23h and 24h.
3	0	W	Oh	Must write 0.
$2-0$	0	W	0h	

7.5.2.2.5 Register 26h (address = 26h), Master Page (080h)

Figure 88. Register 26h

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GLOBAL PDN | OVERRIDE
 PDN PIN | PDN MASK
 SEL | 0 | 0 | 0 | 0 |
| R/W-Oh | R/W-Oh | R/W-Oh | W-Oh | W-Oh | W-Oh | W-Oh |

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 28. Register 26h Field Descriptions

Bit	Field	Type	Reset	Description
7	GLOBAL PDN	R/W	Oh	Bit 6 (OVERRIDE PDN PIN) must be set before this bit can be programmed. $0=$ Normal operation $1=$ Global power-down via the SPI
6	OVERRIDE PDN PIN	R/W	Oh	This bit ignores the power-down pin control. $0=$ Normal operation $1=$ Ignores inputs on the power-down pin
5	PDN MASK SEL	R/W	Oh	This bit selects power-down mask 1 or mask 2. $0=$ Power-down mask 1 1 Power-down mask 2
$4-0$	0	W	Oh	Must write 0

7.5.2.2.6 Register 4Fh (address = 4Fh), Master Page (080h)

Figure 89. Register 4Fh

7	6	5	4	3	2	0	
0	0	0	0	0	0	0	EN INPUT DC COUPLING
W W-Oh	$\mathrm{W}-0 \mathrm{O}$	$\mathrm{W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{R} / \mathrm{W}-0 \mathrm{~h}$

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 29. Register 4Fh Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
0	EN INPUT DC COUPLING	R/W	Oh	Enables DC coupling between analog inputs and driver by changing internal biasing resistor between analog inputs and VCM from $600-\Omega$ to $5 k-\Omega$ $0=D C-c o u p l i n g ~ s u p p o r t ~ d i s a b l e d ~$
$1=$ DC-coupling support enabled				

7.5.2.2.7 Register 53h (address = 53h), Master Page (080h)

Figure 90. Register 53h

7	6	5	4	2	1	0	
0	MASK SYSREF	0	0	0	0	EN SYSREF DC COUPLING	0
W-Oh	R/W-Oh	W-Oh	W-Oh	W-Oh	W-Oh	R/W-Oh	W-Oh

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 30. Register 53h Field Descriptions

Bit	Field	Type	Reset	Description
7	0	W	Oh	Must write 0
6	MASK SYSREF	R/W	Oh	$0=$ Normal operation $1=$ Ignores the SYSREF input
$5-2$	0	W	Oh	Must write 0
1	EN SYSREF DC COUPLING	R/W	Oh	Enables higher common mode voltage input on SYSREF signal (up to 1.6 V). $0=$ Normal operation $1=$ Enables higher SYSREF common mode voltage support
0	0	W	Oh	Must write 0

7.5.2.2.8 Register 55h (address =55h), Master Page (080h)

Figure 91. Register 55h

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | PDN MASK | 0 | 0 | 0 |
| W-Oh | W-Oh | W-Oh | R/W-Oh | W-Oh | W-Oh | W-Oh |

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 31. Register 55h Field Descriptions

Bit	Field	Type	Reset	Description
$7-5$	0	W	Oh	Must write 0
4	PDN MASK	R/W	Oh	This bit enables power-down via a register bit. $0=$ Normal operation $1=$ Power-down is enabled by powering down internal blocks as specified in the selected power-down mask
$3-0$	0	W	Oh	Must write 0

7.5.2.2.9 Register 59h (address = 59h), Master Page (080h)

Figure 92. Register 59h

7	6	5	4	3	1	0	
FOVR CHB	0	ALWAYS WRITE 1	0	0	0	0	0
W-Oh	W-Oh	R/W-Oh	W-Oh	W-Oh	W-Oh	W-Oh	W-Oh

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 32. Register 59h Field Descriptions

Bit	Field	Type	Reset	Description
7	FOVR CHB	W	Oh	Outputs FOVR signal for channel B on the SDOUT pin. FOVR CHB EN (D5) must be enabled. $0=$ normal operation = FOVR on SDOUT pin
6	0	W	Oh	Must write 0
5	ALWAYS WRITE 1	R/W	Oh	Must write 1
$4-0$	0	W	Oh	Must write 0

7.5.2.3 ADC Page (OFh) Registers

7.5.2.3.1 Registers 5F (addresses = 5F), ADC Page (0Fh)

Figure 93. Register 5F

7	6	5	4	3	2	1

LEGEND: R/W = Read/Write; -n = value after reset
Table 33. Registers 5F Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	FOVR THRESHOLD PROG	R/W	E3h	Program the fast OVR thresholds together for channel A and B, as described in the Overrange Indication section.

7.5.2.4 Main Digital Page (6800h) Registers

7.5.2.4.1 Register Oh (address = Oh), Main Digital Page (6800h)

Figure 94. Register Oh

7	6	5	4	3	2	0	
0	0	0	0	0	0	0	PULSE RESET
W-Oh	R/W-Oh						

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 34. Register Oh Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
0	PULSE RESET	R/W	Oh	Must be pulsed after power-up or after configuring registers in the main digital page of the JESD bank. Any register bits in the main digital page (6800h) take effect only after this bit is pulsed; see the Start-Up Sequence section for the correct sequence. $0=$ Normal peration $0 \rightarrow 1 \rightarrow 0=$ Bit is pulsed

7.5.2.4.2 Register 41h (address $=41 \mathrm{~h})$, Main Digital Page (6800h)

Figure 95. Register 41h

7	6	5	4	3	2
0	0	DECFIL MODE[3]	DECFIL EN	0	1
$W-0 h$	$W-0 h$	R/W-Oh	R/W-0h	W-0h	DECFIL MODE[2:0]

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 35. Register 41h Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	0	W	Oh	Must write 0
5	DECFIL MODE[3]	R/W	Oh	This bit selects the decimation filter mode. Table 36 lists the bit settings. The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and decimation filter enable (DECFIL EN, register 41h, bit 4) must be enabled.
4	DECFIL EN	R/W	Oh	Enables the digital decimation filter $0=$ Normal operation, full rate output $1=$ Digital decimation enabled
3	0	W	Oh	Must write 0
$2-0$	DECFIL MODE[2:0]	R/W	Oh	These bits select the decimation filter mode. Table 36 lists the bit settings. The decimation filter control (DEC MODE EN, register 4Dh, bit 3) and decimation filter enable (DECFIL EN, register 41h, bit 4) must be enabled.

Table 36. DECFIL MODE Bit Settings

BITS (5, 2-0)	FILTER MODE	DECIMATION
0000	Bandpass filter centered on $3 \times \mathrm{f}_{\mathrm{S}} / 16$	4 X
0100	Bandpass filter centered on $5 \times \mathrm{f}_{\mathrm{S}} / 16$	4 X
1000	Bandpass filter centered on $1 \times \mathrm{f}_{\mathrm{S}} / 16$	4 X
1100	Bandpass filter centered on $7 \times \mathrm{f}_{\mathrm{S}} / 16$	4 X
0010	Low-pass filter	2 X
0110	High-pass filter	2 C
0011	Low-pass filter with $\mathrm{f}_{S} / 4$ mixer	4 XX (IQ)

7.5.2.4.3 Register 42h (address $=42 \mathrm{~h})$, Main Digital Page (6800h)

Figure 96. Register 42h

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | NYQUIST ZONE | |
| W-Oh | W-Oh | W-Oh | W-Oh | W-Oh | | |

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 37. Register 42h Field Descriptions

Bit	Field	Type	Reset	Description
$7-3$	0	W	Oh	Must write 0
$2-0$	NYQUIST ZONE	R/W	Oh	The Nyquist zone must be selected for proper interleaving correction. Control must be enabled (register 4Eh, bit 7).
			$000=1$ st Nyquist zone (0 MHz to 500 MHz) $001=$ 2nd Nyquist zone (500 MHz to 1000 MHz) $010=3 r d$ Nyquist zone (1000 MHz to 1500 MHz) All others = Not used	

7.5.2.4.4 Register 43h (address $=43 \mathrm{~h}$), Main Digital Page (6800h)

Figure 97. Register 43h

7	6	5	4	3	2	1	
0	0	0	0	0	0	0	FORMAT SEL
$W-0 h$	$W-O h$	$W-O h$	$W-0 h$	$W-0 h$	$W-0 h$	W-Oh	

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; -n = value after reset
Table 38. Register 43h Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
0	FORMAT SEL	R/W	Oh	Changes the output format. Set the FORMAT EN bit to enable control using this bit. $0=$ Twos complement $1=$ Offset binary

7.5.2.4.5 Register 44h (address $=\mathbf{4 4 h})$, Main Digital Page $(6800 \mathrm{~h})$

Figure 98. Register 44h

7	6	5	4	3	2	1
0		DIGITAL GAIN				
R/W-Oh	R/W-Oh					

LEGEND: R/W = Read/Write; -n = value after reset
Table 39. Register 44h Field Descriptions

Bit	Field	Type	Reset	Description
7	0	R/W	Oh	Must write 0
$6-0$	DIGITAL GAIN	R/W	Oh	Digital gain setting. Digital gain must be enabled (register 52h, bit 0). Gain in $\mathrm{dB}=20$ olog (digital gain / 32) $7 \mathrm{Fh}=127$ which equals digital gain of 9.5 dB

7.5.2.4.6 Register 4Bh (address = 4Bh), Main Digital Page (6800h)

Figure 99. Register 4Bh

7	6	5	4	3	1	0	
0	0	FORMAT EN	0	0	0	0	0
W-Oh	W-Oh	R/W-Oh	W-Oh	W-Oh	W-Oh	W-Oh	W-Oh

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 40. Register 4Bh Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	0	W	Oh	Must write 0
5	FORMAT EN	R/W	Oh	This bit enables control for data format selection using the FORMAT SEL register bit. $0=$ Default, output is in twos complement format $1=$ Output is in offset binary format after FORMAT SEL bit is also set
$4-0$	0	W	Oh	Must write 0

7.5.2.4.7 Register 4Dh (address = 4Dh), Main Digital Page (6800h)

Figure 100. Register 4Dh

7	6	5	4	3	2	1	0
0	0	0	0	DEC MOD EN	0	0	0
W-Oh	W-Oh	W-Oh	W-Oh	R/W-Oh	W-Oh	W-Oh	W-Oh

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 41. Register 4Dh Field Descriptions

Bit	Field	Type	Reset	Description
$7-4$	0	W	Oh	Must write 0
3	DEC MOD EN	R/W	Oh	This bit enables control of decimation filter mode via the DECFIL MODE[3:0] register bits. $0=$ Default = Decimation modes control is enabled
$2-0$	0	W	Oh	Must write 0

7.5.2.4.8 Register 4Eh (address = 4Eh), Main Digital Page (6800h)

Figure 101. Register 4Eh

7	6	5	4	3	1	0	
CTRL NYQUIST	0	0	0	0	0	0	0
R/W-Oh	W-Oh	W-Oh	W-Oh	$\mathrm{W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$	$\mathrm{~W}-0 \mathrm{~h}$

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 42. Register 4Eh Field Descriptions

Bit	Field	Type	Reset	Description
7	CTRL NYQUIST	R/W	Oh	This bit enables selecting the Nyquist zone using register 42h, bits 2-0. $0=$ Selection disabled $1=$ Selection enabled
$6-0$	0	W	Oh	Must write 0

7.5.2.4.9 Register 52h (address = 52h), Main Digital Page (6800h)

Figure 102. Register 52h

7	6	5	4	3	2	1	
0	0	0	0	0	0	0	
W-Oh	DIG GAIN EN						

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 43. Register 52h Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
0	DIG GAIN EN	R/W	Oh	Enables selecting the digital gain for register 44h. $0=$ Digital gain disabled $1=$ Digital gain enabled

ADS54J60
www.ti.com

7.5.2.4.10 Register ABh (address = ABh), Main Digital Page (6800h)

Figure 103. Register ABh

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	LSB SEL EN
W-Oh	R/W-Oh						

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 44. Register ABh Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
$1-0$	LSB SEL EN	R/W	Oh	Enable control for register bit LSB SELECT $0=$ Default $1=$ LSB of 16-bit ADC data can be programmed as fast OVR using LSB SELECT bit.

7.5.2.4.11 Register ADh (address = ADh), Main Digital Page (6800h)

Figure 104. Register ADh

7	6	5	4	3	2	1
0	0	0	0	0	0	LSB SELECT
W-Oh	W-Oh	$W-0 h$	$W-0 h$	$W-0 h$	$W-0 h$	$R / W-O h ~$

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 45. Register ADh Field Descriptions

Bit	Field	Type	Reset	Description
$7-2$	0	W	Oh	Must write 0
$1-0$	LSB SELECT	R/W	Oh	Enables output of the FOVR flag instead of the output data LSB. $00=$ Output is 16-bit data $11=$ Output data LSB is replaced by the FOVR information for each channel

7.5.2.4.12 Register F7h (address = F7h), Main Digital Page (6800h)

Figure 105. Register F7h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	DIG RESET
W-Oh							

LEGEND: $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 46. Register F7h Field Descriptions

Bit	Field	Type	Reset	Description
$7-1$	0	W	Oh	Must write 0
0	DIG RESET	W	Oh	Self-clearing reset for the digital block. Does not include the interleaving correction. $0=$ Normal operation $1=$ Digital reset

7.5.2.5 JESD Digital Page (6900h) Registers

7.5.2.5.1 Register Oh (address = Oh), JESD Digital Page (6900h)

Figure 106. Register Oh

7	6	5	4	3	2	0	
CTRL K	0	0	TESTMODE EN	FLIP ADC DATA	LANE ALIGN	FRAME ALIGN	TX LINK DIS
R/W-0h	W-0h	W-0h	R/W-Oh	R/W-Oh	R/W-Oh	R/W-Oh	

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 47. Register Oh Field Descriptions

Bit	Field	Type	Reset	Description
7	CTRL K	R/W	Oh	Enable bit for a number of frames per multi frame. $0=$ Default is five frames per multi frame $1=$ Frames per multi frame can be set in register 06h
$6-5$	0	W	Oh	Must write 0
4	TESTMODE EN	R/W	Oh	This bit generates the long transport layer test pattern mode, as per section 5.1.6.3 of the JESD204B specification. $0=$ Test mode disabled $1=$ Test mode enabled
3	FLIP ADC DATA	R/W	Oh	$0=$ Normal operation $1=$ Output data order is reversed: MSB to LSB.
2	LANE ALIGN	R/W	Oh	This bit inserts the lane alignment character (K28.3) for the receiver to align to lane boundary, as per section 5.3.3.5 of the JESD204B specification.
$0=$ Normal operation				
$1=$ Inserts lane alignment characters				

receiver to align to lane boundary, as per section 5.3.3.5 of the

JESD204B specification.

0=Normal operation

1=Inserts frame alignment characters\end{array}\right|\)| This bit disables sending the initial link alignment (ILA) sequence |
| :--- |
| when SYNC is de-asserted. |
| $0=$ Normal operation |
| $1=$ ILA disabled |

ADS54J60
www.ti.com

7.5.2.5.2 Register 1h (address = 1h), JESD Digital Page (6900h)

Figure 107. Register 1h

7	6	5	4	3	1	0
SYNC REG	SYNC REG EN		JESD FILTER	JESD MODE		
R/W-Oh	R/W-Oh	R/W-Oh	R/W-01h			

LEGEND: R/W = Read/Write; -n = value after reset
Table 48. Register 1h Field Descriptions
\(\left.\left.$$
\begin{array}{|c|l|l|l|l|}\hline \text { Bit } & \text { Field } & \text { Type } & \text { Reset } & \text { Description } \\
\hline 7 & \text { SYNC REG } & \text { R/W } & \text { Oh } & \begin{array}{l}\text { Register control for sync request. } \\
0=\text { Normal operation } \\
1=\text { ADC output data are replaced with K28.5 characters. Register } \\
\text { bit SYNC REG EN must also be set to } 1 .\end{array} \\
\hline 6 & \text { SYNC REG EN } & \text { R/W } & \text { Oh } & \begin{array}{l}\text { Enables register control for sync request. } \\
0=\text { Use the SYNC pin for sync requests } \\
1=\text { Use the SYNC REG register bit for sync requests }\end{array} \\
\hline 5-3 & \text { JESD FILTER } & \text { R/W } & \text { Oh } & \begin{array}{l}\text { These bits and the JESD MODE bits set the correct LMFS } \\
\text { configuration for the JESD interface. The JESD FILTER setting } \\
\text { must match the configuration in the decimation filter page. }\end{array} \\
\hline 2-0 & \text { JESD MODE } & & \begin{array}{l}000=\text { Filter bypass mode } \\
100=\text { Decimate-by-4 } \\
110=\text { Decimate-by-2 } \\
111=\text { Decimate-by-4 complex (IQ) } \\
\text { All others = Not used }\end{array} \\
\hline & & \text { R/W } & 01 \mathrm{~h} & \begin{array}{l}\text { These bits select the number of serial JESD output lanes per ADC. } \\
\text { The JESD PLL MODE register bit located in the JESD analog page } \\
\text { must also be set accordingly. }\end{array} \\
001=20 X \text { mode, four lanes per ADC }\end{array}
$$\right\} \begin{array}{l}010=40 X mode, two lanes per ADC

100=40 X mode, LMFS = 4211 only\end{array}\right\}\)| All others = Not used |
| :--- |

7.5.2.5.3 Register 2h (address = 2h), JESD Digital Page (6900h)

Figure 108. Register 2h

7	6	4	3		2	1
7	5					
LINK LAYER TESTMODE	LINK LAYER RPAT	LMFC MASK RESET	0	0	0	
R/W-Oh	R/W-Oh	R/W-Oh	W-Oh	W-Oh	W-0h	

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 49. Register 2h Field Descriptions

Bit	Field	Type	Reset	Description
$7-5$	LINK LAYER TESTMODE	R/W	Oh	These bits generate a pattern according to clause 5.3.3.8.2 of the JESD204B document. $000=$ Normal ADC data $001=$ D21.5 (high-frequency jitter pattern) $010=$ K28.5 (mixed-frequency jitter pattern) 011 = Repeat initial lane alignment (generates a K28.5 character and continuously repeats lane alignment sequences) $100=12$ octet RPAT jitter pattern All others = Not used
4	LINK LAYER RPAT	R/W	Oh	This bit changes the running disparity in the modified RPAT pattern test mode (only when the link layer test mode $=100)$. $0=$ Normal operation = Changes disparity
3	LMFC MASK RESET	R/W	Oh	Mask LMFC reset coming to digital block. $0=$ LMFC reset is not masked 1 = Ignore LMFC reset request
$2-0$	0	W	Oh	Must write 0

7.5.2.5.4 Register 3h (address = 3h), JESD Digital Page (6900h)

Figure 109. Register 3h

7	6	5	4	3
FORCE LMFC COUNT		LMFC COUNT INIT	2	1
R/W-Oh		R/W-Oh	RELEASE ILANE SEQ	

LEGEND: R/W = Read/Write; $-\mathrm{n}=$ value after reset
Table 50. Register 3h Field Descriptions

Bit	Field	Type	Reset	Description
7	FORCE LMFC COUNT	R/W	Oh	This bit forces the LMFC count. $0=$ Normal operation $1=$ Enables using a different starting value for the LMFC counter
$6-2$	MASK SYSREF		R/W	Oh
$1-0$	RELEASE ILANE SEQ	When SYSREF transmits to the digital block, the LMFC count resets to 0 and K28.5 stops transmitting when the LMFC count reaches 31. The initial value that the LMFC count resets to can be set using LMFC COUNT INIT. In this manner, the receiver can be synchronized early because it receives the LANE ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT register bit must be enabled.		
		R/W	Oh	These bits delay the generation of the lane alignment sequence by $0,1,2$ or 3 multi frames after the code group synchronization. $00=0$ $01=1$ $10=2$

7.5.2.5.5 Register 5h (address = 5h), JESD Digital Page (6900h)

Figure 110. Register 5h

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCRAMBLE EN | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W-Undefined | $W-0 h$ | $W-O h$ | $W-0 h$ | $W-O h$ | $W-0 h ~$ | W-Oh |

LEGEND: R/W = Read/Write; $W=$ Write only; $-\mathrm{n}=$ value after reset
Table 51. Register 5h Field Descriptions

Bit	Field	Type	Reset	Description
7	SCRAMBLE EN	R/W	Undefined	Scramble enable bit in the JESD204B interface. $0=$ Scrambling disabled $1=$ Scrambling enabled
$6-0$	0	W	Oh	Must write 0

7.5.2.5.6 Register 6h (address = 6h), JESD Digital Page (6900h)

Figure 111. Register 6h

7	6	5	4	3	2	1
0	0	0		FRAMES PER MULTI FRAME (K)		
W-Oh	W-Oh	W-Oh	R/W-8h			

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 52. Register 6h Field Descriptions

Bit	Field	Type	Reset	Description
$7-5$	0	W	Oh	Must write 0
$4-0$	FRAMES PER MULTI FRAME (K)	R/W	8 h	These bits set the number of multi frames. Actual K is the value in hex +1 (that is, 0 Fh is $\mathrm{K}=16$).

7.5.2.5.7 Register 7h (address = 7h), JESD Digital Page (6900h)

Figure 112. Register 7h

7	6	5	4	3	2	1	
0	0	0	0	SUBCLASS	0	0	0
W-Oh	W-Oh	W-Oh	W-Oh	R/W-1h	W-0h	W-Oh	

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 53. Register 7h Field Descriptions

Bit	Field	Type	Reset	Description
$7-4$	0	W	Oh	Must write 0
3	SUBCLASS	R/W	1h	This bit sets the JESD204B subclass. 000 = Subclass 0 backward compatible with JESD204A $001=$ Subclass 1 deterministic latency using the SYSREF signal
$2-0$	0	W	Oh	Must write 0

7.5.2.5.8 Register 16h (address = 16h), JESD Digital Page (6900h)

Figure 113. Register 16h

7	6	5	4	3	1	0	
1	0	LANE SHARE	0	0	0	0	0
W-1h	W-Oh	R/W-Oh	W-Oh	W-Oh	W-Oh	W-Oh	W-0h

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 54. Register 16h Field Descriptions

Bit	Field	Type	Reset	Description
7	1	W	1h	Must write 1
6	0	W	Oh	Must write 0
5	LANE SHARE	R/W	Oh	When using decimate-by-4, the data of both channels are output over one lane (LMFS $=1241)$. $0=$ Normal operation (each channel uses one lane)
1 = Lane sharing is enabled, both channels share one lane				
(LMFS $=1241)$				

7.5.2.5.9 Register 31h (address = 31h), JESD Digital Page (6900h)

Figure 114. Register 31h

7	6	5	4	3	2	1	0
DA_BUS_REORDER[7:0]							
R/W-Oh							

LEGEND: R/W = Read/Write; -n = value after reset
Table 55. Register 31h Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	DA_BUS_REORDER[7:0]	R/W	Oh	Use these bits to program output connections between data streams and output lanes in decimate-by-2 and decimate-by-4 mode. Lane Enable with Decimation lists the supported combinations of these bits.

7.5.2.5.10 Register 32h (address = 32h), JESD Digital Page (6900h)

Figure 115. Register 32h

7	6	5	4	3	2	1	0
DA_BUS_REORDER[7:0]							
R/W-Oh							

LEGEND: R/W = Read/Write; -n = value after reset
Table 56. Register 32h Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	DA_BUS_REORDER[7:0]	R/W	Oh	Use these bits to program output connections between data streams and output lanes in decimate-by-2 and decimate-by-4 mode. Lane Enable with Decimation lists the supported combinations of these bits.

7.5.2.6 JESD Analog Page (6A00h) Register

7.5.2.6.1 Register 12h-5h (address = 12h-5h), JESD Analog Page (6A00h)

Figure 116. Register 12h

7	6	5	4	3	1
	SEL EMP LANE 1	2	0		
	R/W-Oh	W-Oh	0		

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Figure 117. Register 13h

7	6	5	4	3	1	0
	SEL EMP LANE 0		0	0		
	R/W-Oh		W-Oh			

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Figure 118. Register 14h

7	6	5	4	2	1
	SEL EMP LANE 2		0	0	
	R/W-Oh	W-Oh	W-Oh		

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Figure 119. Register 15h

7	6	5	4	3	1
	SEL EMP LANE 3		0	0	
	R/W-Oh	W-Oh	W-Oh		

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; $-\mathrm{n}=$ value after reset
Table 57. Register 12h-15h Field Descriptions

Bit	Field	Type	Reset	Description
7-2	SEL EMP LANE 1, 0, 2, or 3	R/W	Oh	Selects the amount of de-emphasis for the JESD output transmitter. The de-emphasis value in dB is measured as the ratio between the peak value after the signal transition to the settled value of the voltage in one bit period. $\begin{aligned} & 0=0 \mathrm{~dB} \\ & 1=-1 \mathrm{~dB} \\ & 3=-2 \mathrm{~dB} \\ & 7=-4.1 \mathrm{~dB} \\ & 15=-6.2 \mathrm{~dB} \\ & 31=-8.2 \mathrm{~dB} \\ & 63=-11.5 \mathrm{~dB} \end{aligned}$
1-0	0	W-Oh	Oh	Must write 0

7.5.2.6.2 Register 16h (address = 16h), JESD Analog Page (6A00h)

Figure 120. Register 16h

7	6	5	4	3	2	1
0	0	0	0	0	0	JESD PLL MODE
W-Oh	W-Oh	W-Oh	W-Oh	W-Oh	W-Oh	R/W-Oh

LEGEND: R/W = Read/Write; $W=$ Write only; $-n=$ value after reset
Table 58. Register 16h Field Descriptions

Bit	Field	Type	Reset	Description
$7-2$	0	W	Oh	Must write 0
$1-0$	JESD PLL MODE	R/W	Oh	These bits select the JESD PLL multiplication factor and must match the JESD MODE setting. $00=20 X$ mode, four lanes per ADC
$01=$ Not used				
$10=40 X$ mode, two lanes per ADC				
$11=$ Not used				

7.5.2.6.3 Register 1Ah (address = 1Ah), JESD Analog Page (6A00h)

Figure 121. Register 1Ah

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | FOVR CHA |
| W-Oh | W-Oh | W-Oh | W-Oh | W-Oh | W-Oh | R/W-Oh |

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; -n = value after reset
Table 59. Register 1Ah Field Descriptions

Bit	Field	Type	Reset	Description
$7-2$	0	W	Oh	Must write 0
1	FOVR CHA	R/W	Oh	Outputs FOVR signal for channel A on the PDN pin. FOVR CHA EN (register 1Bh, bit 3) must be enabled. $0=$ Normal operation = FOVR on the PDN pin
0	0	W	Oh	Must write 0

7.5.2.6.4 Register 1Bh (address = 1Bh), JESD Analog Page (6A00h)

Figure 122. Register 1Bh

7	6	5	3	2	1	0
JESD SWING	0	FOVR CHA EN	0	0	0	
R/W-Oh	W-Oh	R/W-Oh	W-Oh	W-Oh	W-Oh	

LEGEND: R/W = Read/Write; $\mathrm{W}=$ Write only; -n = value after reset
Table 60. Register 1Bh Field Descriptions

Bit	Field	Type	Reset	Description
7-5	JESD SWING	R/W	Oh	Selects output amplitude VOD (mVpp) of the JESD transmitter (for all lanes) $\begin{aligned} & 0=860 \mathrm{mVpp} \\ & 1=810 \mathrm{mVpp} \\ & 2=770 \mathrm{mVpp} \\ & 3=745 \mathrm{mVpp} \\ & 4=960 \mathrm{mVpp} \\ & 5=930 \mathrm{mVpp} \\ & 6=905 \mathrm{mVpp} \\ & 7=880 \mathrm{mVpp} \end{aligned}$
4	0	W	Oh	Must write 0
3	FOVR CHA EN	R/W	Oh	Enables overwrite of PDN pin with the FOVR signal from ChA. $0=$ Normal operation $1=$ PDN is being overwritten
2-0	JESD PLL MODE	R/W	Oh	Must write 0

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. Tl's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Start-Up Sequence

The steps described in Table 61 are recommended as the power-up sequence with the ADS54J60 in 20X mode (LMFS = 8224).

Table 61. Initialization Sequence

STEP	SEQUENCE	DESCRIPTION	PAGE BEING PROGRAMMED	COMMENT
1	Power-up the device	Bring up the supplies to IOVDD $=1.15 \mathrm{~V}, \mathrm{DVDD}=\mathrm{AVDD}=1.9 \mathrm{~V}$, and AVDD3V $=3.0 \mathrm{~V}$.	-	These supplies can be brought up in any order.
2	Reset the device	Apply a hardware reset by pulsing pin 48 (low \rightarrow high \rightarrow low).		A hardware reset clears all registers to their default values.
		Register writes are equivalent to a hardware reset.		-
		Write address 0-000 h with 81 h .	General register	Reset registers in the ADC and master pages of the analog bank.
				This bit is self-clearing bit.
		Write address 4-001h with 00h and address 4-002h with 00h.	Unused page	Clear any unwanted content from the unused pages of the JESD bank.
		Write address 4-003h with 00h and address 4-004h with 68h.	-	Select the main digital page of the JESD bank.
		Write address $6-0 F 7 \mathrm{~h}$ with 01 h for channel A and address $7-0 \mathrm{~F} 7 \mathrm{~h}$ with 01h for channel B.	Main digital page (JESD bank)	Use the DIG RESET register bit to reset all pages in the JESD bank.
				This bit is a self-clearing bit.
		Write address 6-000h with 01h, then address 6-000h with 00h.		Pulse the PULSE RESET register bit for channel A.
		Write address 7-000h with 01h, then address 7-000 with 00h.		Pulse the PULSE RESET register bit for channel B.
3	Performance modes	Write address 0-011h with 80h.	-	Select the master page of the analog bank.
		Write address 0-059h with 20h.	Master page (analog bank)	Set the ALWAYS WRITE 1 bit.
4	Program registers for 20X or 40X serialization	Write address 4-003h with 00h and address 4-004h with 69h.	-	Select the JESD digital page.
		Write address 6-000h with 80h.	JESD digital page (JESD bank)	Set the CTRL K bit for channel A.
		Write address 6-001h with 21 h .		Enable 20X serialization.
		Write address 6-001h with 22h.		Enables 40X serialization when written together.
		Write address 6-016h with 90h.		
		Write address 6-031h with AAh.		
		Repeat the above step for channel B by writing 7 instead of 6 as the configuration bits.		-
5	Set the value of K and the SYSREF signal frequency accordingly	Write address 6-006h with XXh (choose the value of K).	JESD digital page (JESD bank)	For example, if $K=31$ by writing address $6-006 \mathrm{~h}$ with 1 Fh , the SYSREF signal frequency must be kept less than or equal to $250 \mathrm{MHz} / 32=7.8125 \mathrm{MHz}$.
6	Set the ALWAYS WRITE 1 bits	Write address 4-003h with 00h and address 4-004h with 6Ah.	-	Select the JESD analog page.
		Write address 6-012h with 02h and address 7-012h with 02h.	JESD analog page (JESD bank)	Set the ALWAYS WRITE 1 bit of both channels.
7	JESD lane alignment	Pull the SYNCB pin (pin 63) low	-	Transmit K28.5 characters.
		Pull the SYNCB pin high		After the receiver is synchronized, initiate an ILA phase and subsequent transmissions of ADC data.

8.1.2 Hardware Reset

Figure 123 and Table 62 illustrate the timing for a hardware reset.

Figure 123. Hardware Reset Timing Diagram

Table 62. Timing Requirements for Figure 123

		MIN	TYP
t_{1}	Power-on delay: delay from power up to active high RESET pulse	1	MAX
t_{2}	Reset pulse duration: active high RESET pulse duration	10	ms
t_{3}	Register write delay: delay from RESET disable to SEN active	100	ns

8.1.3 SNR and Clock Jitter

The signal-to-noise ratio (SNR) of the ADC is limited by three different factors: quantization noise, thermal noise, and jitter, as shown in Equation 4. The quantization noise is typically not noticeable in pipeline converters and is 98 dB for a 16 -bit ADC. The thermal noise limits the SNR at low input frequencies and the clock jitter sets the SNR for higher input frequencies.

$$
\begin{equation*}
S N R_{A D C}[d B c]=-20 \log \sqrt{\left(10^{-\frac{S N R_{\text {Quantization Noise }}}{20}}\right)^{2}+\left(10^{\left.-\frac{S N R_{\text {Thermal Noise }}}{20}\right)^{2}+\left(10^{-\frac{S N R_{\text {Itter }}}{20}}\right)^{2}}\right.} \tag{4}
\end{equation*}
$$

The SNR limitation resulting from sample clock jitter can be calculated by Equation 5:

$$
\begin{equation*}
\operatorname{SNR}_{\text {Jitter }}[d B c]=-20 \log \left(2 \pi \times f_{\text {in }} \times T_{\text {Jitter }}\right) \tag{5}
\end{equation*}
$$

The total clock jitter ($\mathrm{T}_{\text {Jitter }}$) has two components: the internal aperture jitter (130 fs) is set by the noise of the clock input buffer and the external clock jitter. $\mathrm{T}_{\text {Jitter }}$ can be calculated by Equation 6:

$$
T_{\text {Jitter }}=\sqrt{\left(T_{\text {Jitter, Ext_Clock_Input }}\right)^{2}+\left(T_{\text {Aperture_ADC }}\right)^{2}}
$$

External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.

The ADS54J60 has a thermal noise of approximately 71.1 dBFS and an internal aperture jitter of 145 fs . The SNR, depending on the amount of external jitter for different input frequencies, is shown in Figure 124.

Figure 124. SNR versus Input Frequency and External Clock Jitter

ADS54J60
www.ti.com

8.2 Typical Application

The ADS54J60 is designed for wideband receiver applications demanding excellent dynamic range over a large input frequency range. A typical schematic for an ac-coupled receiver is shown in Figure 125.

NOTE: GND = AGND and DGND connected in the PCB layout.
Figure 125. AC-Coupled Receiver

Typical Application (continued)

8.2.1 Design Requirements

8.2.1.1 Transformer-Coupled Circuits

Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as ADT1-1WT or WBC1-1) can be used up to 300 MHz to achieve good phase and amplitude balances at the ADC inputs. When designing dc driving circuits, the ADC input impedance must be considered. Figure 126 and Figure 127 show the impedance $\left(\mathrm{Z}_{\mathbb{N}}=\mathrm{R}_{\mathbb{I}} \| \mathrm{C}_{\mathbb{I}}\right)$ across the $A D C$ input pins.

Figure 126. R_{IN} vs Input Frequency

Figure 127. C_{IN} vs Input Frequency

By using the simple drive circuit of Figure 128, uniform performance can be obtained over a wide frequency range. The buffers present at the analog inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.

Figure 128. Input Drive Circuit

8.2.2 Detailed Design Procedure

For optimum performance, the analog inputs must be driven differentially. This architecture improves commonmode noise immunity and even-order harmonic rejection. A small resistor (5Ω to 10Ω) in series with each input pin is recommended to damp out ringing caused by package parasitics, as shown in Figure 128.

Typical Application (continued)

8.2.3 Application Curves

Figure 129 and Figure 130 show the typical performance at 170 MHz and 230 MHz , respectively.

9 Power Supply Recommendations

The device requires a $1.8-\mathrm{V}$ nominal supply for DRVDD, a $1.9-\mathrm{V}$ nominal supply for AVDD, and a $3.0-\mathrm{V}$ nominal supply for AVDD3V. There is no specific sequence for power-supply requirements during device power-up. AVDD, DRVDD, and AVDD3V can power-up in any order.

ADS54J60

10 Layout

10.1 Layout Guidelines

The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A layout diagram of the EVM top layer is provided in Figure 131. Complete layout of EVM is available at ADS54J60's EVM folder. Some important points to remember during board layout are:

- Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as illustrated in the reference layout of Figure 131 as much as possible.
- In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to minimize coupling between them. This configuration is also maintained on the reference layout of Figure 131 as much as possible.
- Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output traces must not be kept parallel to the analog input traces because this configuration can result in coupling from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be matched in length to avoid skew among outputs.
- At each power-supply pin (AVDD, DRVDD, or AVDDD3V), keep a $0.1-\mu \mathrm{F}$ decoupling capacitor close to the device. A separate decoupling capacitor group consisting of a parallel combination of $10-\mu \mathrm{F}, 1-\mu \mathrm{F}$, and $0.1-\mu \mathrm{F}$ capacitors can be kept close to the supply source.

10.2 Layout Example

Figure 131. ADS54J60 EVM layout

11 Device and Documentation Support

11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.4 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS54J60IRMP	ACTIVE	VQFN	RMP	72	168	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ54J60	Samples
ADS54J60IRMPT	ACTIVE	VQFN	RMP	72	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ54J60	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-$ Free/Green conversion plan has not been defined
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

[^1]

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NON SOLDER MASK DEFINED (PREFERRED)

SOLDER MASK DEFINED

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community
www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

[^0]: (1) See the Power-Down Mode section for details.

[^1]: In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

