BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second"
R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto
Optics Letters, vol. 32, p. 2049-2051 (2007)


Abstract:
Fourier domain mode-locked (FDML) laser at 1050 nm for ultra-high-speed optical coherence tomography (OCT) imaging of the human retina is demonstrated. Achievable performance, physical limitations, design rules, and scaling principles for FDML operation and component choice in this wavelength range are discussed. The fiber-based FDML laser operates at a sweep rate of 236 kHz over a 63 nm tuning range, with 7 mW average output power. Ultra-high-speed retinal imaging is demonstrated at 236,000 axial scans per second. This represents a speed improvement of ~10× over typical high-speed OCT systems, paving the way for densely sampled volumetric data sets and new imaging protocols.

BMO authors (in alphabetic order):
Robert Huber

Assoziierte Projekte:
Optical Coherent Ranging and Optical Coherence Tomography (OCT): Imaging and profilometry with rapidly frequency swept laser sources
Fourier Domain Mode Locking (FDML): Spectral mode locking in optics and applications


WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34