BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Dispersion, coherence and noise of Fourier domain mode locked lasers"
Benjamin R. Biedermann, Wolfgang Wieser, Christoph M. Eigenwillig, Thomas Klein, Robert Huber
Optics Express 17, 9947 (2009)


Abstract:
We report on the effect of chromatic dispersion on coherence length and noise of Fourier Domain Mode Locked (FDML) lasers. An FDML laser with a sweep range of 100nm around 1550nm has been investigated. Cavity configurations with and without dispersion compensation have been analyzed using different widths of the intra-cavity optical band-pass filter. The measurements are compared to non-FDML wavelength swept laser sources. Based on these observations, a simple model is developed providing a connection between timing, photon cavity lifetime and characteristic time constant of the filter. In an optimized configuration, an instantaneous laser linewidth of 20pm is observed, corresponding to a 10x narrowing compared to the intra-cavity optical bandpass filter. A relative intensity noise of -133dBc/Hz or 0.2% at 100MHz detection bandwidth during sweep operation is observed. For optimum peration, the filter drive frequency has to be set within 2ppm or 120mHz at 51kHz.

BMO authors (in alphabetic order):
Benjamin Biedermann
Christoph Eigenwillig
Robert Huber
Thomas Klein
Wolfgang Wieser

Assoziierte Projekte:
Optical Coherent Ranging and Optical Coherence Tomography (OCT): Imaging and profilometry with rapidly frequency swept laser sources
Fourier Domain Mode Locking (FDML): Spectral mode locking in optics and applications


WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34