BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser"
Rainer Leonhardt, Benjamin R. Biedermann, Wolfgang Wieser, Robert Huber
Optics Express 17, 16801-16808 (2009)


Abstract:
We report on the highly efficient non-linear optical frequency conversion of the wavelength swept output from a Fourier Domain Mode Locked (FDML) laser. Different concepts for power scaling of FDML lasers by post-amplification with active fibers are presented. A two-stage post-amplification of an FDML laser with an amplification factor of 300 up to a peak power of 1.5 W is used to supply sufficient power levels for nonlinear conversion. Using a single-mode dispersion shifted fiber (DSF), we convert this amplified output that covers the region between 1541 nm and 1545 nm to a wavelength range from 1572 nm to 1663 nm via modulation instability (MI). For this four wave mixing process we observe an efficiency of ~40%. The anti-Stokes signal between 1435 nm and 1516 nm was observed with lower conversion efficiency. In addition to shifting the wavelength, the effect of MI also enables a substantial increase in the wavelength sweep rate of the FDML laser by a factor of ~50 to 0.55 nm/ns.

BMO authors (in alphabetic order):
Benjamin Biedermann
Robert Huber
Wolfgang Wieser

Assoziierte Projekte:
Optical Coherent Ranging and Optical Coherence Tomography (OCT): Imaging and profilometry with rapidly frequency swept laser sources
Fourier Domain Mode Locking (FDML): Spectral mode locking in optics and applications


WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34