BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Instantaneous lineshape analysis of Fourier domain mode-locked lasers"
Sebastian Todor, Benjamin Biedermann, Wolfgang Wieser, Robert Huber and Christian Jirauschek
OPTICS EXPRESS 19, p. 8802 (2011)


Abstract:
We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

BMO authors (in alphabetic order):
Benjamin Biedermann
Robert Huber

Assoziierte Projekte:
Fourier Domain Mode Locking (FDML): Spectral mode locking in optics and applications
Optical Coherent Ranging and Optical Coherence Tomography (OCT): Imaging and profilometry with rapidly frequency swept laser sources

PDF-Version

WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34