BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Efficiency Enhancement in Hybrid P3HT/Silicon Nanocrystal Solar Cells"
Sabrina Niesar, Wolfgang Fabian, Nils Petermann, Daniel Herrmann, Eberhard Riedle, Hartmut Wiggers, Martin S. Brandt, and Martin Stutzmann
Green 1, 339 - 350 (2011).


Abstract:
Hybrid organic-inorganic solar cells from poly(3-hexylthiophene) (P3HT) and freestanding silicon nanocrystals (Si-ncs) combine the advantages of siliconbased photovoltaics with the cost-efficient solution processing technique. At present, the microwave-plasma synthesis of Si-ncs that allows for a future upscaling to industrial demands is at the expense of the Si-nc surface quality and the number of charge-trapping defects. Here, we present an enhancement of the solar cell performance by identifying the major factors which are limiting the device efficiency. With the help of low-cost post-growth treatments of the Si-ncs and the optimization of various device parameters, P3HT:Si-ncs bulk heterojunction solar cells with an efficiency up to 1.1% are achieved. In particular, etching of the Si-ncs with hydrofluoric acid to remove the surface oxide shells and surface defects has a strong impact on the solar cell performance. An intermediate Si weight ratio of around 60% is found to lead to the highest current densities. For Si-ncs with very small diameters, an additional enhancement of the open circuit voltage was observed. Moreover, we show that the structural order of P3HT has a strong influence on the efficiency, which can be explained by an improved charge carrier separation at the P3HT/Si-ncs interface in combination with an enhanced charge transport in the P3HT phase.

BMO authors (in alphabetic order):
Daniel Herrmann
Eberhard Riedle

Order Hardcopy

WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34