BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm"
Sebastian Marschall; Thomas Klein; Wolfgang Wieser; Teresa Torzicky; Michael Pircher; Benjamin R. Biedermann; Christian Pedersen; Christoph K. Hitzenberger; Robert Huber; Peter E. Andersen
Proc. SPIE 8207, 82130R (2012)


Abstract:
Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers, enable acquisition of densely sampled three-dimensional datasets covering a wide field of view. However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment. With a moderate SOA current (270 mA) we achieve up to 100nm total sweep range and 12 μm depth resolution in air. By modulating the current, we can optimize the output spectrum and thereby improve the resolution to 9 μm in air (~6.5 μm in tissue). The average output power is higher than 20mW. Both sweep directions show similar performance; hence, both can be used for OCT imaging. This enables an A-scan rate of 350 kHz without buffering the light source output.

BMO authors (in alphabetic order):
Benjamin Biedermann
Robert Huber
Thomas Klein
Wolfgang Wieser

Assoziierte Projekte:
Fourier Domain Mode Locking (FDML): Spectral mode locking in optics and applications
Optical Coherent Ranging and Optical Coherence Tomography (OCT): Imaging and profilometry with rapidly frequency swept laser sources


WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34