BMOLogo
Publications

LMU München
Fakultät für Physik


Home

General
Research
Funding
Members
Publications
  All Publications
  PhD Theses
  Master Theses
  Search
  i Search
Lectures/Seminars
Conferences
Vacancies
Search

Internal




Impressum
(c) 2002 BMO

"Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes"
E. Riedle, M. Bradler, M. Wenninger, C. F. Sailer and I. Pugliesi
Faraday Disc. 163, 139 - 158 (2013).


Abstract:
Complex multi-stage relaxation and reaction pathways after optical excitation of molecules makes the disentanglement of the underlying mechanisms challenging. We present four examples that a new transient spectrometer with excitation fully tunable from the deep UV to the IR and 225 to 1700 nm probing allows for an analysis with greatly reduced ambiguity. The temporal resolution of about 50 fs allows to resolve all relevant processes. For each example a new twist in the sequence of relaxation steps results that had previously been overlooked. In malachite green it appears that the importance of the phenyl twisting has been overemphasized and rather a charge transfer state should be considered. In TINUVIN-P the predicted twisting as driving motion for the ultrafast IC is confirmed and leads to a resolution of the earlier puzzle that the sub-5 ps regime shows kinetics deviating from a pure cooling process despite the sub-ps proton transfer cycle. For the bond cleavage of Ph2CH-Cl and Ph2CH-Br the degree of electron transfer within the radical pair can now be determined quantitatively and leads to a profound understanding of the long term cation yield. For the first time coherent wavepacket motion in the photoproducts is reported. Last but not least the measurement of the GSB recovery in the deep UV allows for the surprising result, that even after S2 excitation of cyclopentenones the triplet states are reached with near unity probability within a few picoseconds.

BMO authors (in alphabetic order):
Maximilian Bradler
Igor Pugliesi
Eberhard Riedle
Christian Sailer
Matthias Wenninger

Order Hardcopy

WWW-Version

mailto: webmaster
Letzte Änderung: 2016-09-14 13:34