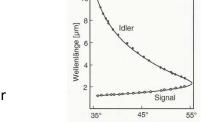
Frequenzwandlung bei kurzen Lichtimpulsen

Jonathan Reschauer

Laserphysik-Seminar, SS2015

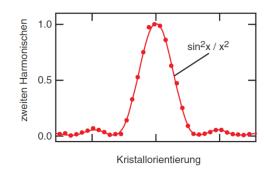

<u>Frequenzwandlung:</u> Notwendig in der Spektroskopie, um Moleküle bei passender Wellenlänge anzuregen und um zeitliche Auflösung zu optimieren

<u>Nichtlineare Effekte:</u> Bei hohen elektrischen Feldern durch intensive Laserpulse ist die harmonische Näherung des Atompotentials nicht mehr ausreichend:

- Polarisation nicht mehr linear in $E: P = \epsilon_0 \chi_1 E_0 \cos(\omega t) + \frac{1}{2} \epsilon_0 \chi_2 E_0^2 [1 + \cos(2\omega t)] + \frac{1}{4} \epsilon_0 \chi_3 E_0^3 [3\cos(\omega t) + \cos(3\omega t)] + \cdots$
- *P* oszilliert mit verschiedenen Frequenzen:
 - χ_2 : zeitlich konstanter Anteil (Gleichrichtung des Feldes); Anteil mit 2 ω
 - χ_3 : Terme mit ω und 3ω -Oszillation

Phänomene durch χ₂:

- Frequenzverdopplung:
 - Zwei ω-Photonen werden zu einem 2ω-Photon gewandelt
 - Einwirkung von zwei Feldern (ω_1, ω_2) auf nichtlineares Medium: Entstehung von $2\omega_1$, $2\omega_2$, $(\omega_1+\omega_2)$ und $|\omega_1-\omega_2|$


- Optisch parametrischer Prozess:
 - Pumpphoton ω_p zerfällt: Signal- und Idlerphoton ($\omega_s + \omega_i = \omega_p$)
 - Allein durch Wahl der Kristallorientierung ω_{s} und ω_{i} variierbar

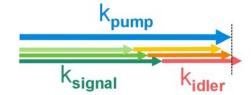
Phasenanpassung:

- Nicht alle Komponenten aus nichtlinearem Kristall entstehen gleich stark
- Einfallender Puls läuft mit $v_{ph}(\omega)$ in Medium: Erzeugung von 2ω -Licht mit $v_{ph}(2\omega)$

Verstärkung: Früher erzeugtes 2ω-Licht interferiert mit später erzeugtem 2ω-Licht Abschwächung: Nach bestimmter Wegstrecke im Medium werden Oszillationen gegenphasig

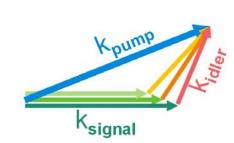
- Für intensive Pulse: 2ω: n(ω)=n(2ω) → doppelbrechende Medien
- In Praxis: Drehen des Kristalls (opt. Achse relativ zu Licht-Wellenvektor). Photonenausbeute ≤ 100%

In allen Medien mit Symmetrie- und Inversionszentrum sind nichtlineare χ mit gerader Ordnung null!


Phänomene durch χ₃:

- Isotrope Medien mit Symmetriezentrum: Niedrigste Nichtlinearität ist χ_3
- 3ω -Oszillation: Beste Ausbeute bei Erzeugung in zwei χ_2 -Prozessen:
 - 1. 2ω-Licht der ω-Grundoszillation wird erzeugt
 - 2. Mischung von 2ω mit ω -Licht. Summenfrequenzformel: 3ω ; Ausbeute > 30%
- Brechungsindex intensitätsabhängig: $n = n_0 + n_2 I$; $n_2 \approx 10^{-14}/10^{-16}$ cm²/W
- Über intensitätsabhängigen Brechungsindex kann Licht selbst seine Eigenschaften verändern!
- <u>Selbstfokussierung:</u> Bei Bewegung von Gauß-Lichtbündel in einem Medium erfährt zentraler Teil wegen Nichtlinearität größeren Brechungsindex als Flanken

- Opt. Weg im Zentrum nach durchlaufener Dicke L um $n_2 l_0 L$ größer als an Rand
- Krümmung der Phasenflächen
- Fokussierung
- <u>Selbstphasenmodulation:</u> Nichtlinearität des Brechungsindex wirkt auf Phase der Lichtimpulse: Frequenz des Pulses wird zeitabhängig:
 - Am Anfang des Pulses Rotverschiebung, am Ende des Pulses Blauverschiebung
 - Spektrale Verbreiterung des Lichtimpulses
 - Wird verwendet, um aus kurzem Lichtpuls bei bestimmter Frequenz kurze Lichtpulse in breitem Spektralbereich (Vis bis NIR) zu erzeugen
- Selbstaufsteilung:
 - $n(I) \rightarrow v_{gr}(I)$ für $t_{puls} \approx t_{Tr"agerperiode}$
 - Neu erzeugte Spektralkomponenten sind nicht mehr symmetrisch um ursprüngliche Trägerfrequenz verteilt
 - Einhüllende: Impuls verflacht an Front und steilt sich an Rücken auf


χ₂-Anwendungen:

- Optisch parametrischer Prozess: Technischer Einsatz zur Erzeugung abstimmbarer Lichtimpulse
- Optisch Parametrischer Oszillator (OPO): Parametrischer Verstärker mit Rückkopplung
 - Resonatorverstärkung von Vakuumfluktuationen (wie in Laser)
 - Geringe Effizienz, lange Pulse
- Optischer Parametrischer Verstärker (OPA): Kurzwellige Photonen pumpen aktives Medium:
 - Kontinuumerzeugung in Saphir-Platte (Pump: Kleiner Anteil aus Fundamentale): Seed für BBO
 - Parametrischer Verstärkung des Seed-Lichts im BBO. Pump: (2ω-) Pumplicht
 - Aufteilung in Signal/Seed (Vis)- und Idlerphoton (NIR)
 - Phasengeschwindigkeit von Pump, Signal, Idler durch Kristalldrehung angepasst
 - Keine v_{gr}-Anpassung: Pulse unterschiedlich schnell in Kristall
 - Längerer Weg im OPA: Längere Pulse

NOPA:

- Nichtkollineare Anordnung von Pump und Signal/Seed:
 vgr-Anpassung von Seed und Idler
- Zusätzliche Signalphotonen aus Idler und Signal/Seed an gleichem Punkt erzeugt: Weniger Pulsverlängerung
- Realisiert durch breitbandige Phasenanpassung in parametrischem Prozess: Verstärkung einer breiten spektralen Region möglich
- Frequenzverdopplung: Generierung von UV-Pulsen

<u>γ</u>₃-Anwendungen:

- Superkontinuumslicht:
 - Saphir/CaF₂: Teil der Fundamentalen (1-3 μJ/Puls) in Substrat fokussiert
 - Selbstfokussierung erzeugt Interaktionsstrecke (=Single-Filament): Intensität bei Propagation hoch
 - Betrieb: Zwischen Selbstfokussierungs- und Zerstörungsschwelle (evtl. Volumenaustausch!)