LMU München
Fakultät für Physik



(c) 2002 BMO

"Vibrational spectra from atomic fluctuations in dynamics simulations: II. Solvent-induced frequency fluctuations at femtosecond time-resolution"
Matthias Schmitz and Paul Tavan
J. Chem. Phys. 121, 12247-12258 (2004)

The mid infra-red (MIR) spectra of molecules in polar solvents exhibit inhomogeneously broadened bands, whose spectral positions are shifted as compared to the gas phase. The shifts are caused by interactions with structured solvation shells and the broadenings by fluctuations of these interactions. The MIR spectra can be calculated from hybrid molecular dynamics (MD) simulations, which treat the solute molecule by density functional theory (DFT) and the solvent by molecular mechanics (MM), by the so-called instantaneous normal mode analysis (INMA) or by Fourier transforming the time correlation function (FTTCF) of the molecular dipole moment. In part I of this work (M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12233-12246, 2004) we explored an alternative method based on generalized virial (GV) frequencies noting, however, that GV systematically underestimates frequencies. As shown by us these artifacts are caused by solvent-induced fluctuations of the (i) equilibrium geometry, (ii) force constants, and (iii) normal mode directions as well as by (iv) diagonal and (v) off-diagonal anharmonicities. Here we now show, by analyzing the time scales of fluctuations and sample MD trajectories of formaldehyde in the gas phase and in water, that all these sources of computational artifacts can be made visible by a Fourier analysis of the normal coordinates. Correspondingly, the error sources (i),(iii)-(v) can be removed by bandpass filtering, as long as the spectral signatures of the respective effects are well separated from the fundamental band. Furthermore, the artifacts arising from effect (ii) can be strongly diminished by a time-resolved version of the GV approach (TF-GV). The TF-GV method then yields for each mode j a trajectory of the vibrational frequency ω_j(t|τ) at a time resolution τ > τ_j, which is only limited by the corresponding oscillation time τ_j = 2π / ω_j and, thus, is in the femtosecond range. A correlation analysis of these trajectories clearly separates the librational motions from the conformational dynamics of the solvation shells and yields the inhomogeneously broadened MIR spectra, if the theory of motional narrowing is properly included. The MIR spectrum of FA in solution obtained by TF-GV agrees very well with the FTTCF result, if one applies the so-called ``harmonic approximation'' quantum correction factor and a temperature scaling to the FTTCF intensities. Also for INMA an excellent agreement is achieved, if one disregards a slight INMA overestimate of linewidths.

BMO authors (in alphabetic order):
Matthias Schmitz
Paul Tavan

Assoziierte Projekte:
QM/MM hybrid descriptions of solutes in complex solvents

mailto: webmaster
Letzte Änderung: 2016-09-14 11:34