LMU München
Fakultät für Physik



(c) 2002 BMO

"Vibrational spectra from atomic fluctuations in dynamics simulations: I. Theory, limitations, and a sample application."
Matthias Schmitz and Paul Tavan
J. Chem. Phys. 121, 12233-12246

Hybrid molecular dynamics (MD) simulations, which combine density functional theory (DFT) descriptions of a molecule with a molecular mechanics (MM) modeling of its solvent environment, have opened the way towards accurate computations of solvation effects in the vibrational spectra of molecules. Recently, Wheeler et al. [ChemPhysChem 4, 382, (2002)] have suggested to compute these spectra from DFT/MM-MD trajectories by diagonalizing the covariance matrix of atomic fluctuations. This so-called principal mode analysis (PMA) allegedly can replace the well-established approaches, which are based on Fourier transform methods or on conventional normal mode analyses. By scrutinizing and revising the PMA approach we identify five conditions, which must be guaranteed if PMA is supposed to render exact vibrational frequencies. Besides specific choices of (a) coordinates and (b) coordinate systems, these conditions cover (c) a harmonic intramolecular potential, (d) a complete thermal equilibrium within the molecule, and (e) a molecular Hamiltonian independent of time. However, the PMA conditions [(c)(d)] and [(c)(e)] are generally violated in gas phase DFT-MD and liquid phase DFT/MM-MD trajectories, respectively. Based on a series of simple analytical model calculations and on the analysis of MD trajectories calculated for the formaldehyde molecule in the gas phase (DFT) and in liquid water (DFT/MM) we show that in both phases the violation of condition (d) can cause huge errors in PMA frequency computations, whereas the inevitable violations of conditions (c) and (e), the latter being generic to the liquid phase, imply systematic and sizable underestimates of the vibrational frequencies by PMA. We demonstrate that the huge errors, which are caused by an incomplete thermal equilibrium violating (d), can be avoided if one introduces mode-specific temperatures Tj and calculates the frequencies from a "generalized virial" (GV) expression instead from PMA. Concerning ways to additionally remove the remaining errors, which GV still shares with PMA, we refer to Paper II of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12247 (2004)].

BMO authors (in alphabetic order):
Matthias Schmitz
Paul Tavan

mailto: webmaster
Letzte Änderung: 2016-09-14 11:34