LMU München
Fakultät für Physik



(c) 2002 BMO

"Ultrahigh-speed non-invasive widefield angiography"
Cedric Blatter, Thomas Klein, Branislav Grajciar, Tilman Schmoll, Wolfgang Wieser, Raphael Andre, Robert Huber, Rainer A. Leitgeb
J. Biomed. Opt. 17, 070505 (2012)

Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ∼ 48  deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

BMO authors (in alphabetic order):
Raphael André
Robert Huber
Thomas Klein
Wolfgang Wieser

Assoziierte Projekte:
Fourier Domain Mode Locking (FDML): Spectral mode locking in optics and applications
Optical Coherent Ranging and Optical Coherence Tomography (OCT): Imaging and profilometry with rapidly frequency swept laser sources


mailto: webmaster
Letzte Änderung: 2016-09-14 11:34